Total Synthesis of (+)-Macbecin I

Raymond Baker* and Jose L. Castro
Chemistry Department, Merck Sharp and Dohme Research Labs, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR

Abstract

The first total enantiospecific synthesis of (+)-macbecin I has been performed in a convergent manner by coupling the epoxide (3) with a higher order cyanocuprate derived from the vinyl iodide (46). The required absolute stereochemistries at $C(20)-C(21)$ and $C(12)-C(13)$ were accessible by enantioselective aldol condensations while that at $C(16)-C(17)$ was achieved by Sharpless epoxidation of a secondary (E)-allylic alcohol (39), efficiently prepared by reaction of the aldehyde (37) with $\mathrm{CrCl}_{2}-\mathrm{CH}_{3} \mathrm{CHI}_{2}$. The remaining stereocentre at $\mathrm{C}-18$ was introduced by an asymmetric hydroxylation of an enolate. Macrocyclization of the amino acid (59) to give the lactam (60) was successfully achieved by its reaction with either 2-mesitylenesulphonyl chloride or bis(2-oxo-3oxazolidinyl)phosphinic chloride. Incorporation of the carbamate functionality was achieved by reaction of the parent hydroxy derivative with sodium cyanate and trifluoroacetic acid. The final oxidation to the quinone was accomplished with cerium(iv) ammonium nitrate.

Macbecin I (1a) and II (1b) are new antitumour antibiotics isolated from the fermentation broth of Nocardia sp (No C -14919). ${ }^{1}$ Their structure and absolute configuration have been determined by Muroi et al. ${ }^{2}$ in 1980 from partial degradation studies and X-ray crystallographic analysis and they were assigned to the ansamicin group of antibiotics which also includes geldanamycin, ${ }^{3}$ herbimycin, ${ }^{4}$ and ansamitocin. ${ }^{5}$ They were shown to be macrocyclic (19 member) lactams, joining C-2 and C-6 of a benzoquinone and hydrobenzoquinone ring respectively, and contain seven chiral centres, an isolated trisubstituted double bond, a conjugated (Z, E)-diene system, and a carbamate function. Macbecin I can also be converted into macbecin II by reduction with sodium dithionite. Both compounds are moderately active against several gram-positive bacteria and fungi and they showed marked antitumour activity against leukemia P388, melanoma B16, and Ehrlich carcinoma in vivo. ${ }^{6}$ Although some efforts have been directed towards the synthesis of the macbecins, ${ }^{7}$ our work represents the first total asymmetric synthesis of $(+)$-macbecin.

Results and Discussion

Retrosynthetic analysis of macbecin followed disconnection of the $\mathrm{C}(15)-\mathrm{C}(16)$ bond which we considered could be formed in a stereoselective manner by reaction of the appropriate epoxide (3) with a higher order cyanocuprate derived from the vinyl iodide (2). ${ }^{10}$ Preliminary reports of the synthesis of $(+)$-macbecin have appeared. ${ }^{9,8}$

Synthesis of the Vinyl Iodide (2).-It was apparent that the absolute stereochemistry required at $\mathrm{C}-13$ and $\mathrm{C}-12$ in (2) would be accessible by an enantioselective aldol condensation ${ }^{11}$ while the $(Z) \mathrm{C}(10)-\mathrm{C}(11)$ double bond could be prepared either by dehydration of a β-hydroxy- δ-lactone or via a (Z) selective Horner-Emmons olefination. ${ }^{12}$ The first of these two alternatives has been previously described ${ }^{8}$ but the route suffered from a number of drawbacks on a large scale and a new route to the allylic alcohol (7) was first sought. Thus treatment of diethyl methylmalonate (4) with di-iodocarbene $\left(\mathrm{CHI}_{3}\right.$, NaH) in refluxing ether gave diethyl di-iodomethylmethylmalonate (5) in 65% yield; this was easily converted into (E)3 -iodo-2-methyl-2-propenoic acid (6) in 89% yield by reaction with KOH (3 equiv.) in refluxing ethanol-water. \dagger Reduction of

(1a)

(6)

(8)

$\begin{aligned} \rightarrow(13 a): R & =M e \\ \times(13 b): R & =H\end{aligned}$

(14)

(15)

Scheme 2. Reagents: i, CHI_{3} (1.1 equiv.), NaH (1.1 equiv.), refluxing $\mathrm{Et}_{2} \mathrm{O}, 18 \mathrm{~h}$; ii, KOH (3 equiv.), EtOH-water (3:1), reflux, 24 h ; iii, LiAlH_{4} (1 mol equiv.), THF, 5 to $25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; iv, $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ v, $9-\mathrm{BBN}-\mathrm{OTf},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; vi, (8), -78 to $25^{\circ} \mathrm{C}$; vii, TBDMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; viii, NaOMe (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH},-25^{\circ} \mathrm{C}, 20 \mathrm{~min}$; ix, TBDMS-OTf (1.5 equiv.), $2,6-\mathrm{lutidine}$ (2.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; x, NaH (1.2 equiv.), MeI (5 equiv.), THF-DMF ($3: 1$), $25^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; xi, DIBAL-H (1.6 equiv.), toluene, $-80^{\circ} \mathrm{C}, 1 \mathrm{~h}$; xii, $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOMe}$ (1.15 equiv.), 18-crown-6 (2.5 equiv.), $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$ (1.1 equiv.), THF, $-80^{\circ} \mathrm{C}, 1 \mathrm{~h}$; xiii, AcOH-TFAwater ($4: 1: 1$), $85^{\circ} \mathrm{C}, 2 \mathrm{~h}$; xiv, DIBAL-H (1.6 equiv.), toluene, $-80^{\circ} \mathrm{C}, 1 \mathrm{~h}$; xv, MeOH, PPTS (cat.), $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$
(9), according to the methodology of Evans et al., ${ }^{14}$ gave a 65% isolated yield of the erythro-alcohol (10). Only traces of other isomers were detected in this reaction. Removal of the chiral auxiliary was efficiently performed at this stage by treatment of (10) with NaOMe in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-23^{\circ} \mathrm{C}$ to give (12) in 97% isolated yield. Protection of the hydroxy group as the TBDMS derivative using standard conditions (TBDMS-OTf,* 2,6-lutidine) afforded (13a) in quantitative yield. Reduction of the ester (13a) to the aldehyde (14) was cleanly performed $(98 \%$ isolated yield) by reaction with DIBAL-H at $-80^{\circ} \mathrm{C}$ for 1 h . Although treatment of the silylated aldol compound (11) with NaOMe in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ or DIBAL-H at $-80^{\circ} \mathrm{C}$ gave only products derived from attack on the oxazolidinone carbonyl, reaction of (11) with $\mathrm{LiOOH}\left(\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}\right.$, THF$\left.\mathrm{H}_{2} \mathrm{O}\right)^{15}$ at $5{ }^{\circ} \mathrm{C}$ for 2 h produced the required acid (13b) in 84% isolated yield. This could be converted into the methyl ester (13a) by reaction of its sodium salt (NaH) with MeI in THF-DMF (99% isolated yield).

In this approach to the synthesis of (2), formation of the (Z) $\mathrm{C}(10)-\mathrm{C}(11)$ double bond was anticipated to be accessible by a (Z)-selective Horner-Emmons olefination. Thus, treatment of

[^0]the aldehyde (14) with 1.1 equiv. of the potassium enolate of trimethyl phosphonoacetate $\left[\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{THF},-80^{\circ} \mathrm{C}, 15\right.$ min] in the presence of 18 -crown- 6 (5 equiv.) at $-80^{\circ} \mathrm{C}$ for 1 h afforded a 58% isolated yield of the (Z)- α, β-unsaturated ester (15) together with a 34% yield of the corresponding (E)-isomer. Fortunately, when the Still and Gennari ${ }^{12}$ modification using bis(2,2,2-trifluoroethyl)methoxycarbonylmethylphosphonate [$\left.\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOMe}\right]$ instead of trimethyl phosphonoacetate was followed, the required (Z)-olefin (15) was obtained in 98% isolated yield with no (E)-isomer being detected. Conversion of (15) into (16) required some investigation. Thus treatment of (15) with TBAF (2 equiv.) at $0^{\circ} \mathrm{C}$ for 8 h in THF gave a complex mixture of compounds from which the lactone (16) was isolated in 7% yield. On the other hand, the silylated compound (15) was found to be stable in 80% AcOH -water after 2 h at room temperature and 2 h at $85^{\circ} \mathrm{C}$ which represent the normal conditions for removing TBDMS groups. The transformation could successfully be achieved, however, by reaction of (15) with $4: 1: 1 \mathrm{AcOH}-\mathrm{TFA}$-water at $85^{\circ} \mathrm{C}$ for 2 h to give (16) in 91% isolated yield.
Reduction of the lactone (16) (DIBAL-H, $-80^{\circ} \mathrm{C}$) followed by reaction of the corresponding lactol (17) with MeOH-PPTS (cat.) gave the methyl acetal (2) in 97% overall yield as a $20: 1$

Figure. N.O.e. experiments on (2)

Scheme 3. Reagents: i, CHCl_{3} (1.0 equiv.), $40 \% \mathrm{NaOH}$ (16 equiv.), $70{ }^{\circ} \mathrm{C}$, $7 \mathrm{~h} ; \mathrm{ii}, 70^{\circ} \% \mathrm{HNO}_{3}$ (1.5 equiv.), $\mathrm{AcOH}, 10^{\circ} \mathrm{C}, 3 \mathrm{~h}$; iii, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.), $\mathrm{Me}_{2} \mathrm{SO}_{4}$ (8.0 equiv.), DMF, $25^{\circ} \mathrm{C}, 24 \mathrm{~h}$
(21)
$+$
(9)

(22)

$$
i i i \mid 97 \%
$$

Scheme 4. Reagents: i , (9) (1.0 equiv.), $\mathrm{Et}_{2} \mathrm{BOTf}$ (1.1 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-2^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, (21) (1.0 equiv.), 0.5 h at $-78^{\circ} \mathrm{C}$ and 1 h at $0^{\circ} \mathrm{C}$; iii, NaOMe (1.2 equiv.), $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2},-17^{\circ} \mathrm{C}, 15 \mathrm{~min}$; iv, NaH (1.1 equiv.), $\mathrm{Me}_{2} \mathrm{SO}_{4}$ (2.0 equiv.), THF--DMF ($3: 1$), $-5^{\circ} \mathrm{C}, 16 \mathrm{~h}$; $\mathrm{v}, \mathrm{LiBH}_{4}$ (3.0 equiv.), $\mathrm{THF}, 25^{\circ} \mathrm{C}$

* If $\mathrm{SO}_{3} \cdot$ py is first dissolved in DMSO and this solution cannulated into a solution of the alcohol in DMSO- $\mathrm{Et}_{3} \mathrm{~N}$, as originally reported, ${ }^{23}$ no oxidation takes place.
\dagger It is important to stop this hydrogenation after 1 equiv. of H_{2} has been used ($c a .0 .5 \mathrm{~h}$) because slow reduction of the pyrrole ring then begins.
mixture of α and β anomers. The stereochemistry at the anomeric centre was proved by n.O.e. experiments (see Figure), where the n.O.e. observed between $9-\mathrm{OMe}$ and $13-\mathrm{H}$ and that of $13-\mathrm{H}$ and $12-\mathrm{H}$ are indicative of an α-disposition for the OMe group, as expected from the relative stabilities for α and β anomers based on the anomeric effect. ${ }^{16}$ This route (Scheme 2) yielded (2) in 9 steps with an overall yield of 53% from (7).

Synthesis of Epoxide (3).-As in the case of vinyl iodide (2) formation of the required absolute stereochemistry at C-20 and C-21 in (3) was accessible by application of an enantioselective aldol condensation while the $C(16)-C(17)$ epoxy unit could be formed by Sharpless epoxidation. ${ }^{17}$ The remaining stereocentre at $\mathrm{C}-18$ was planned to be formed via the recently developed asymmetric hydroxylations of enolates. ${ }^{18}$

The necessary 2,5-dimethoxy-3-nitrobenzaldehyde (21) ${ }^{19}$ was prepared from p-methoxyphenol by Reimer-Teimann reaction followed by nitration and methylation (Scheme 3). Reaction of (21) with the preformed (Z)-boron enolate of the propionyl oxazolidinone (9) ($\mathrm{Et}_{2} \mathrm{~B}-\mathrm{OTf}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$) gave the required erythro alcohol (22) in 88% isolated yield. The use of ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}$ instead of $\mathrm{Et}_{3} \mathrm{~N}$ for generating the (Z)-boron enolate of (9) resulted, for this aldehyde, in a total loss of stereocontrol in the aldol condensation with all four possible isomers being formed. ${ }^{20}$ The chiral auxiliary was then removed under the usual conditions (NaOMe , $\mathrm{MeOH}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2},-17^{\circ} \mathrm{C}$) and the β-hydroxy group methylated (NaH , $\mathrm{Me}_{2} \mathrm{SO}_{4}$, THF) to give the ester (24) in 88% overall yield (Scheme 4).

Attempted reduction of the ester (24) with LiBH_{4} in THF at room temperature was complicated by the fact that, under these basic conditions, intramolecular displacement of the methoxy group ortho to the nitro group by the newly created alkoxide occurred. In this way, a mixture of the required alcohol and a cyclic ether was obtained, in 28 and 38% yields respectively. To overcome this problem and to avoid possible future complications in the cuprate opening of the epoxide, the nitro group was converted into the 2,3-dimethylpyrrole ${ }^{21}$ by successive catalytic hydrogenation and condensation with acetonylacetone (91% for two steps) (Scheme 5). The protected compound (25) could now be quantitatively reduced to the alcohol (26) using LiAlH_{4}. Nevertheless, Swern oxidation ${ }^{22}$ $\left[(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N},-60^{\circ} \mathrm{C}\right]$ of (26) gave less than 2% of the required aldehyde (27) with no recovery of the starting alcohol, probably due to reaction of the pyrrole moiety with the activated DMSO. Fortunately the aldehyde (27) could be isolated in 89% yield when a solution of the alcohol (26) in DMSO-Et N -THF was treated at $25^{\circ} \mathrm{C}$ with solid $\mathrm{SO}_{3}-$ pyridine complex (3 equiv.) for 40 min.* Homologation of the chain was achieved by Wittig reaction of the above aldehyde with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOMe}$ in refluxing dichloromethane. Thus, the α, β-unsaturated ester (28) was obtained in excellent (99.5%) yield and with more than $98 \%(E)$-selectivity (limit of ${ }^{1} \mathrm{H}$ n.m.r. detection). Reduction of the double bond using $10 \% \mathrm{Pd}-\mathrm{C}$ in ethanol cleanly afforded the ester (29), the basic material for introduction of the hydroxy group at C-18. \dagger

The hydroxylation of acyl oxazolidinones ${ }^{18 d}$ was chosen to introduce the $\mathrm{C}(18)$-hydroxy group in view of its high degree of enantioselection. Thus, the ester (29) was quantitatively hydrolysed to the acid (30) ($\mathrm{LiOH}, \mathrm{MeOH}$) and this was coupled with the lithium salt ($\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$) of $(S)-4-$ isopropyloxazolidin-2-one ($\mathrm{Xv}-\mathrm{H}$; see Scheme 5), either by activating the acid with carbonyl di-imidazole, ${ }^{24} 2,2^{\prime}$-dipyridyldisulphide, ${ }^{25}$ or with pivaloyl chloride, ${ }^{26}$ to give (31) in 50,78 , and 89% yields respectively.
Treatment of the sodium enolate $\left[\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{THF}\right.$, $-78^{\circ} \mathrm{C}$] of (31) with 2-benzenesulphonyl-3-phenyloxaziridine (32) (1.8 equiv., THF $,-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$) afforded the required
(24)

(25)
$\xrightarrow[100 \%]{\mathrm{iii}}$
震

(26)

(27)

(33)

vii 100%
(29) : $R=O M e$
(30) : $\mathrm{R}=\mathrm{OH}$
viii. $i \times \xrightarrow{89 \%}(31): R=X v$
$\frac{v i}{99 \%}$

(28)

$X v=$

Ar =

(35)

Scheme 5. Reagents: i, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}, 1 \mathrm{~atm}, 2.5 \mathrm{~h}$; ii, acetonylacetone (3.0 equiv.), isobutyric acid (cat.), refluxing toluene, Dean-Stark trap, 65 h ; iii, LiAlH_{4} (1 mol equiv.), THF, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$; iv, $\mathrm{SO}_{3} \cdot \mathrm{Py}$ (3.0 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (7.0 equiv.), DMSO-THF ($6.5: 1$), $25^{\circ} \mathrm{C}, 45$ $\min ; \mathrm{v}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOMe}\left(2.0\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 24 \mathrm{~h}$; vi, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}$, EtOH, $1 \mathrm{~atm}, 40 \mathrm{~min}$; vii, LiOH (5.0 equiv.), MeOH-THF-water ($3: 1: 1$), $25^{\circ} \mathrm{C}$, 18 h ; viii, pivaloyl chloride (1.01 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (1.01 equiv.), toluene, $0^{\circ} \mathrm{C} ; 1 \mathrm{~h}$; ix, Li-Xv (2.3 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; x , $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}\left(1.3\right.$ equiv.), THF, $-78^{\circ} \mathrm{C}, 25 \mathrm{~min}$; xi, 2-benzenesulphonyl-3-phenyloxaziridine (1.8 equiv.), $-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$; xii, AcOH (10 equiv.), $-78^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$; xiii, MeOMgCl (2.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($3.5: 1$), $-10^{\circ} \mathrm{C}, 1 \mathrm{~h}$; xiv, TBDMS-OTf (1.5 equiv.), $2,6-\mathrm{lutidine}$ (2.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; xv, DIBAL-H (1.6 equiv.), toluene, $-80^{\circ} \mathrm{C}, 2 \mathrm{~h}$; xvi, CrCl_{2} (8.0 equiv.), $\mathrm{CH}_{3} \mathrm{CHI}_{2}$ (2.0 equiv .), THF, $25^{\circ} \mathrm{C}$, $5 \mathrm{~h}, 91 \%$ from ($\mathbf{3 6}$); xvii, $\mathrm{Bu}_{4} \mathrm{NF}$ (2.0 equiv.), THF, $25^{\circ} \mathrm{C}, 16 \mathrm{~h}$; xviii, (+)-DIPT (1.2 equiv.), $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}_{4}{ }_{4}\right.$ (1.0 equiv.), TBHP (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-20^{\circ} \mathrm{C}, 22 \mathrm{~h}$; xix, NaH (1.3 equiv.), MeI (5.0 equiv.), THF, -15 to $0^{\circ} \mathrm{C}, 2 \mathrm{~h} 88 \%$ from (39)
hydroxy compound (33) in 83% yield after flash chromatography. This reaction was found to be very sensitive to the quenching conditions employed. Thus, the recommended camphorsulphonic acid could not be used because of decomposition of the pyrrole moiety in this very acidic medium. Moreover, decomposition ($\mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$) of the excess of oxidizing agent has to be performed before warming up the reaction mixture since the pyrrole is quickly oxidized at room temperature. Finally, an aqueous work up (AcOH -water) is necessary owing to silylation of the hydroxy group under these conditions with $\mathrm{HN}\left(\mathrm{SiMe}_{3}\right)_{2}$. Successful removal of the chiral auxiliary from (33) was achieved by reaction with MeOMgCl in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ to give (34) in $82-86 \%$ yields; a ca. 15% yield of (35) was observed. The secondary hydroxy group of (34) was then protected as the TBDMS derivative (TBDMS-OTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 97 \%$ yield) and the resulting ester (36) was cleanly reduced to the aldehyde (37) using DIBAL-H at $-80^{\circ} \mathrm{C}$. Preparation of the (E)-olefin (38) was achieved in 91% isolated yield from (36), and with more than $99 \%(E)$-selectivity,
by reaction of aldehyde (37) with $\mathrm{CrCl}_{2}-\mathrm{CH}_{3} \mathrm{CHI}_{2}$ in THF at room temperature following the procedure of Takai et al. ${ }^{27}$ Under these extremely mild conditions no epimerization of the aldehyde occurred and we believe that this method offers one of the best alternatives to the Schlosser modification of the Wittig reaction for preparing (E)-olefins. ${ }^{28}$

Deprotection of the hydroxy group of (38) under standard conditions (TBAF, THF) afforded the secondary (E)-allylic alcohol (39) required for epoxidation. Although (39) presents the $\mathrm{C}-18$ hydroxy group in the right absolute stereochemistry to reinforce the preferential asymmetric induction of the Sharpless epoxidation when (+)-DIPT is used as the chiral auxiliary, attempted epoxidation under catalytic conditions [(+)-DIPT (0.12 equiv.), $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i} P r}\right)_{4}$ (0.10 equiv.)] gave a $5.3: 1$ mixture of the expected epoxide (40) and its corresponding isomer in 97% combined yield. This ratio could, however, be increased to $95: 5$ under stoicheiometric conditions [(+)-DIPT (1.2 equiv.), $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i} P r}\right)_{4}$ (1.0 equiv.)] to give a 96% combined yield from (38). Methylation (NaH, MeI, THF, $0^{\circ} \mathrm{C}$) of this mixture followed by

(3)

(2): $x=1$
(41a): $X=L i$
(41b): $X=\frac{1}{2}\left(\mathrm{CuCNLi}_{2}\right)$
(41c) : $X=\mathrm{AlMe}_{3}$

(42)

(44)
(43)
Scheme 6.

(46)

Scheme 7. Reagents: i, DIBAL-H (2.6 equiv.), toluene, $-20^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; ii, TBDMS-Cl (1.5 equiv.), imidazole (3.0 equiv.), DMF, $25^{\circ} \mathrm{C}, 17 \mathrm{~h}$
flash chromatography gave pure (3) in 88% yield and with the correct absolute stereochemistry in all its centres. Thus, epoxide (3) has been prepared in 19 steps and 28.5% overall yield from (21).

Attempted Coupling of Epoxide (3) and Vinyl Iodide (2).-The plan for reaction of the epoxide (3) and the vinyl iodide (2) was to utilize ring opening of the epoxide with a higher order cyanocuprate ${ }^{10}$ derived from (2). Nevertheless, in spite of extensive efforts we were unable to obtain any of the desired coupled product (42) (Scheme 6). Thus, treatment of (2) with either ${ }^{1} \mathrm{BuLi}$ (2 equiv.) or BuLi (1 equiv.) at $-80^{\circ} \mathrm{C}$ to achieve halogen-metal exchange (41a) followed by transmetalation with CuCN (0.5 equiv.) to generate (41b) and subsequent reaction with epoxide (3) led only to quantitative recovery of the epoxide together with variable amounts (ca. 20%) of dimer (43), arising from thermal decomposition of the cuprate. The epoxide was also recovered unchanged from its reaction with an aluminate (41c), prepared by reaction of (41a) with $\mathrm{Me}_{3} \mathrm{Al} .{ }^{29}$ The most obvious modification to overcome the low reactivity of the 2,3 -disubstituted epoxide would be to utilize Lewis acid catalysis in the reaction. ${ }^{30}$ This would be, however, incompatible with the reactivity of the α, β-unsaturated methoxy
lactol moiety in (2) ${ }^{31}$ and indeed reaction of (3) with the vinyl lithium derivative (41a) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}{ }^{30 \mathrm{c}}$ at $-78^{\circ} \mathrm{C}$ afforded only small amounts of a product (44) due to iodide opening of the epoxide together with extensive decomposition of (41a).

We had, therefore, to consider an alternative strategy; on the basis of previous reports ${ }^{32}$ the use of a vinyl iodide such as (46) appeared to represent a viable approach. Thus, DIBAL-H reduction of ester (13a) at $-20^{\circ} \mathrm{C}$ followed by silylation of the primary alcohol (TBDMS-Cl, imidazole) gave the bis-silylated compound (46) in 98% overall yield (Scheme 7). Although reaction of the epoxide (3) with the higher order cyanocuprate derived from (46) (2 equiv. ${ }^{\text {' }} \mathrm{BuLi},-80^{\circ} \mathrm{C}, 2 \mathrm{~h} ; 0.5$ equiv. CuCN , -78 to $-15^{\circ} \mathrm{C}, 15 \mathrm{~min}$) gave less than 5% of the coupled product (48) after 48 h at $-30^{\circ} \mathrm{C}$, addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}{ }^{30 a}$ (2 equiv.) to a solution of the epoxide (3) and the cuprate in ether at $-78{ }^{\circ} \mathrm{C}$ afforded, after 1 h at that temperature, an 83% isolated yield of (48); a 12% yield of compound (44) was also isolated under these conditions (Scheme 8). The secondary hydroxy group was methylated under the usual conditions ($\mathrm{NaH}, \mathrm{MeI}, \mathrm{THF}, 25^{\circ} \mathrm{C}$) to give (49) in excellent $(96 \%$) yield. N.O.e. experiments on (49) corroborated that the $\mathrm{C}(14)-\mathrm{C}(15)$ olefin geometry had been preserved during the cuprate coupling because of the lack of an n.O.e. between $15-\mathrm{H}$ and $14-\mathrm{Me}$ and positive n.O.e.s between $15-\mathrm{H}$ and both $13-\mathrm{H}$ and $17-\mathrm{H}$.
Selective removal of the primary TBDMS group in the presence of the secondary one was obtained with good selectivity ($>95: 5$) by using 1:3:3 HF.Py-Py-THF in MeOH for 6 h at room temperature and conversion of (49) into $(\mathbf{5 0})$ was achieved in 95% isolated yield. The remaining 4% of bisdeprotected diol was recoverted into (49) [TBDMS-OTf (3 equiv.), 2,6-lutidine (5 equiv.)] and deprotected as before to give a total yield of $(\mathbf{5 0})$ in excess of 98%.
A Horner-Emmons reaction was employed to introduce the (Z) $\mathrm{C}(10)-\mathrm{C}(11)$ double bond. Alcohol ($\mathbf{5 0}$) was oxidized to the aldehyde (51) with $\mathrm{SO}_{3} \cdot$ Py complex in DMSO-Et $\mathrm{N}-\mathrm{THF}$ at room temperature (89% yield) and this was reacted with the potassium anion of $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOMe}$, using the same conditions described for (15), to give (52) in 99% isolated yield. Reduction of the ester function with DIBAL-H at $-33^{\circ} \mathrm{C}$ afforded a 98% isolated yield of allylic alcohol (53).

(53): R = TBDMS
(52)
(54): $R=H$
ix 70%

Scheme 8. Reagents: i, (46) (2.4 equiv.), ${ }^{\mathrm{A}} \mathrm{BuLi}\left(4.8\right.$ equiv.), $-80^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ii, $\mathrm{CuCN}\left(1.2\right.$ equiv.), -78 to $-10^{\circ} \mathrm{C}, 15 \mathrm{~min}$; iii, (3) (1.0 equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.0$ equiv.), $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iv, NaH (1.3 equiv.), $\mathrm{MeI}\left(5.0\right.$ equiv.), THF, $25^{\circ} \mathrm{C}, 6 \mathrm{~h} ; \mathrm{v}, \mathrm{HF} \cdot \mathrm{Py}-\mathrm{Py}-\mathrm{THF}\left(1: 3: 3 ; 20\right.$ equiv. HF), $\mathrm{MeOH}, 2{ }^{\circ} \mathrm{C}, 6.5 \mathrm{~h}$; vi, $\mathrm{SO}{ }_{3} \cdot \mathrm{Py}$ (7.0 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (15 equiv.), DMSO-THF ($6.5: 1$), $25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; vii, ($\left.\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOMe}$ (1.15 equiv.), 18 -crown- 6 (2.5 equiv.), $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$ (1.1 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; viii, DIBAL-H (2.6 equiv.), toluene, $-20^{\circ} \mathrm{C}, 1.5 \mathrm{~h} ; \mathrm{ix}, \mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}$ (30 equiv.), KOH (20 equiv .), $\mathrm{EtOH}-$ water ($2: 1$), reflux, 68 h ; x, TFAA (3.0 equiv.), $\mathrm{Et}_{3} \mathrm{~N}\left(6.0\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ to $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; xi, pH 7 phosphate buffer, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 15 \mathrm{~min} ; \mathrm{xii}, \mathrm{PDC}(2.0$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}$; xiii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Me}) \mathrm{COOEt}\left(2.0\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 40 \mathrm{~h}$; xiv, LiOH (10 equiv.), THF-MeOH-water ($2: 2: 1$), $25^{\circ} \mathrm{C}, 24$ h ; xv , bis(2-oxo-3-oxazolidinyl)phosphinic chloride (4.0 equiv.), ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ (10 equiv.), toluene, $85^{\circ} \mathrm{C}, 15 \mathrm{~h} ; \mathrm{xvi}, \mathrm{Bu} \mathrm{H}_{4} \mathrm{NF}\left(5.0\right.$ equiv.), THF, $25^{\circ} \mathrm{C}, 40 \mathrm{~h}$; xvii, NaOCN (12 equiv.), TFA (12 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ to $25^{\circ} \mathrm{C}, 3 \mathrm{~h}$; xviii, CAN (3.0 equiv.), MeCN-water, $0^{\circ} \mathrm{C}, 10 \mathrm{~min}$

We had then arrived at what we believed to be the best stage for removing the pyrrole protecting group, in view of the nucleophilic conditions usually required for this purpose. ${ }^{21,33}$ However, treatment of (53) with $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}$ (5 equiv.) in refluxing EtOH -water produced only desilylation of the secondary alcohol to give (54) in 78% isolated yield after 16 h . Extended reaction times usually led to decomposition compounds. Although almost no reaction was observed when $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}-\mathrm{KOH}$ (3 and 2 equiv. respectively) were used, under more forcing conditions (30 equiv. $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}-20$ equiv. KOH , refluxing EtOH -water, 68 h) a 70% isolated yield of (55) was obtained together with 25% recovered (53). This was recycled under the same conditions to give (55) in a total combined yield of 87%.

The nitrogen group was reprotected as the trifluoroacetamide under normal conditions (trifluoroacetic acid anhydride, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give (56) in 95% yield. Oxidation of the allylic alcohol to the corresponding aldehyde was found to be, however, more difficult than expected. Thus, $\mathrm{SO}_{3} \cdot \mathrm{Py}$-DMSO failed to give reasonable yields of (57) and activated MnO_{2} afforded a moderate (65%) yield of the aldehyde together with extensive amounts of decomposition products. Satisfactory oxidation was achieved with pyridinium dichromate (PDC) ${ }^{34}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ although a $9 \%(Z)$ to (E) isomerization of the $\mathrm{C}(10)-\mathrm{C}(11)$ double bond occurred during the reaction. Both isomers could not be separated at this point but this was achieved in the next step. Thus, the aldehyde mixture was reacted with (ethoxycarbonylethylidene)triphenylphosphorane $\left(\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CMeCOOEt}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give, after flash chromatography, a 83% isolated yield (two steps) of pure (Z, E)-diene (58).

We had, therefore, arrived at the crucial stage of the synthesis since removal of the trifluoroacetamide protecting group and hydrolysis of the ester would yield the amino acid (59) required for macrolactamization. Treatment of (58) with LiOH (10 equiv.) in MeOH -water-THF for 24 h gave (59), easily extracted from water (pH 5), and which was used in the next step without further purification after being azeotropically dried with toluene. Excitingly, macrocyclization was achieved much more quickly than anticipated after only four attempts. Thus, although the use of DCC, diethyl cyanophosphonate, ${ }^{35}$ or diphenylphosphoryl azide ${ }^{36}$ did not induce the required ring closure reaction, this was successfully achieved by reaction in the presence of 2-mesitylenesulphonyl chloride ${ }^{37}$ or bis(2-oxo-3-oxazolidinyl)phosphinic chloride. ${ }^{38}$ Syringe pump addition of a solution of (59$)(1 \mathrm{mg} / \mathrm{ml})$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ (2 equiv.) in toluene to a 10 m solution of 2-mesitylenesulphonyl chloride and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ (20 equiv. each) in toluene at $65^{\circ} \mathrm{C}$ gave, after 14 h , a 71% isolated yield of ($\mathbf{6 0}$). On the other hand, reaction of (59) with bis(2-oxo-3-oxazolidinyl)phosphinic chloride (4 equiv.) and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ (10 equiv.) in toluene ($1.5 \times 10^{-3} \mathrm{M}$) afforded an 85% isolated yield of $(\mathbf{6 0})$ after 15 h at $85^{\circ} \mathrm{C}$. We are impressed by the simplicity and efficiency of this second set of conditions. We had, therefore, achieved one of our major goals and had now to find a procedure for incorporation of the carbamate function at $\mathrm{C}-13$ and oxidation to the quinone level.

Three alternative pathways were considered and worked out. We had the option to introduce the carbamate group followed by oxidation or the reverse. In the first approach the TBDMS group on (60) was removed under the usual conditions (TBAF, THF, $25^{\circ} \mathrm{C}$) to give (61) in 89% yield. Although carbamoylation of (16) could not be achieved by its reaction with phosgene (to generate the corresponding chloroformate derivative) followed by quenching with ammonia, ${ }^{39}$ treatment of (61) with sodium cyanate ${ }^{40}$ (12 equiv.) and trifluoroacetic acid (12 equiv.) in

[^1]$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ for 3 h gave the required carbamate (62) in 86% isolated yield. Oxidation of (62) with cerium(Iv) ammonium nitrate (CAN; 3 equiv.) in MeCN-water ${ }^{41}$ at $0^{\circ} \mathrm{C}$ for 10 min afforded (+)-macbecin I (1a) in 37% isolated yield. Comparable yields of ($\mathbf{1 a}$) (32%) were obtained when silver(II) dipicolinate ${ }^{42}$ was used as the oxidizing agent. Alternatively, oxidation of (60) with CAN as previously described gave the quinone (63) in 50% isolated yield, which was converted into macbecin I (1a) by desilylation (TBAF, THF, $25^{\circ} \mathrm{C} ; 73 \%$) and carbamoylation (72% yield). In addition, decarbamoyl macbecin I (64) was also prepared in 37% yield by CAN oxidation of (61) as above.*

Experimental

Unless otherwise stated, n.m.r. spectra were recorded on a Bruker AM-360 spectrometer (360 MHz for ${ }^{1} \mathrm{H}$ and 90.6 MHz for ${ }^{13} \mathrm{C}$) using CDCl_{3} as the solvent and TMS as the internal reference. Macbecin numbering is used in the assignation of these spectra which is based on decoupling techniques, 2D n.m.r., and n.O.e. experiments. The following abbreviations are used: s (singlet), d (doublet), t (triplet), q (quartet), qn (quintet). I.r. spectra were determined on a Perkin-Elmer 782 spectrometer. Mass spectra and high-resolution mass spectra (h.r.m.s.) were obtained in a VC $70-250$ spectrometer. Optical rotations were measured on a Perkin-Elmer Lambda 5 apparatus using dichloromethane (distilled from CaH_{2}) as the solvent. Melting and boiling points are uncorrected.

Anhydrous diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), tetrahydrofuran (THF), dimethylformamide (DMF), and toluene were obtained from the Aldrich Co. Triethylamine, di-isopropylethylamine, 2,6lutidine, and dichloromethane were distilled from CaH_{2}. Dimethylsulphoxide (DMSO) and pyridine were distilled from CaH_{2} and stored over 4-A molecular sieves. Dimethyl sulphate was dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ for 24 h . Methyl iodide and 1,1-di-iodoethane were passed through a column of neutral alumina prior to use. Anhydrous CrCl_{2} and t-butyl hydroperoxide (3 M in iso-octane) were obtained from the Aldrich Co.

Diethyl Di-iodomethylmethylmalonate (5).-Diethyl methylmalonate ($100 \mathrm{~g}, 0.57 \mathrm{~mol}$) was slowly added to sodium hydride (55% in mineral oil; $27.6 \mathrm{~g}, 0.58 \mathrm{~mol}$) in anhydrous diethyl ether (700 ml) during 1 h with vigorous stirring and the resulting thick mixture was refluxed for a further 2.5 h . Iodoform ($226 \mathrm{~g}, 0.57$ mol) was added in one portion and the mixture refluxed for 20 h under nitrogen. After being cooled to $0^{\circ} \mathrm{C}$ (ice-water bath), 10% aqueous $\mathrm{HCl}(200 \mathrm{ml})$ was added and the mixture stirred for 10 \min. The organic phase was decanted, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The remaining residue was diluted with light petroleum (100 ml) and the precipitated iodoform was removed by filtration. The solvent was removed at reduced pressure and the remaining liquid distilled (b.p. $129-131^{\circ} \mathrm{C}$ at 4 mmHg) to give the title compound (5) ($165 \mathrm{~g}, 65 \%$) as a pale pink oil; $\delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.9\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHI}_{2}\right), 4.3\left(4 \mathrm{H}, \mathrm{q}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.9$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), and $1.4\left(6 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Me}\right.$).
(E)-3-Iodo-2-methylpropen-2-oic Acid (6).-A solution of diethyl di-iodomethylmethylmalonate (5) ($164 \mathrm{~g}, 0.37 \mathrm{~mol}$) and $\mathrm{KOH}(63.2 \mathrm{~g}, 1.13 \mathrm{~mol})$ in EtOH-water ($3: 1,500 \mathrm{ml}$) was refluxed for 24 h . After being cooled to room temperature the solvent was removed under reduced pressure and the residue redissolved in 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(300 \mathrm{ml})$ and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{ml})$. The basic solution was acidified with 12 M HCl , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \times 70 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to a solid. Crystallization from light petroleum gave the acid (6) ($69.9 \mathrm{~g}, 89 \%$) as white needles, m.p. $51-53^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.8(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}), 7.9(1 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}$, $3-\mathrm{H}$), and 2.0 ($3 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}, 2-\mathrm{Me}$) (Found: C, $22.79 ; \mathrm{H}, 2.46 \%$. $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{IO}_{2}$ requires $\mathrm{C}, 22.66 ; \mathrm{H}, 2.38 \%$).
(E)-3-Iodo-2-methylprop-2-enol (7)-To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of (E)-3-iodo-2-methylprop-2-enoic acid (6) $(45.5 \mathrm{~g}, 214.6 \mathrm{mmol})$ in dry THF (350 ml), solid $\mathrm{LiAlH}_{4}(8.15 \mathrm{~g}$, 214.6 mmol) was slowly added over 2.5 h . After being stirred at room temperature for a further 3 h , the reaction mixture was recooled to $0^{\circ} \mathrm{C}$ and the excess of hydride was destroyed by careful dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Ether (200 ml) was added and the mixture was poured into cold 2 m $\mathrm{H}_{2} \mathrm{SO}_{4}(300 \mathrm{ml})$, then the organic phase was decanted off and the aqueous solution extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{ml})$. The combined organic solutions were concentrated and the remaining oil dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ and washed with 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{ml})$. The basic aqueous phase was reextracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{ml})$, then the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under vacuum. Distillation at reduced pressure (b.p. $94-96^{\circ} \mathrm{C}$ at 9 mmHg) afforded the title compound ($29.7 \mathrm{~g}, 70 \%$) as a colourless liquid; $v_{\text {max }}$.(film) $3350,2940,1620,1450,1380$, 1280,1080 , and $1020 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.26(1 \mathrm{H}, \mathrm{t}, J 1.4 \mathrm{~Hz}, 3-\mathrm{H}), 4.09$ ($2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), $2.71(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, and $1.83(3 \mathrm{H}, \mathrm{d}, J 1.4 \mathrm{~Hz}, 2-$ Me); $\delta_{\mathrm{C}} 147.2$ ($\mathrm{s}, \mathrm{C}-2$), 77.2 (d, C-3), 67.0 (t, C-1), and 21.3 ($\mathrm{q}, 2-$ $\mathrm{Me}) ; m / z$ (e.i.) $198\left(M^{+}, 11 \%\right.$), 91 (15), 71 (34), 57 (80), and 43 (100) (Found: C, 24.32; H, 3.67. $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{IO}$ requires $\mathrm{C}, 24.26 ; \mathrm{H}$, 3.56%).
(E)-3-Iodo-2-methylprop-2-enal (8).—Activated $\mathrm{MnO}_{2}(28 \mathrm{~g}$, 320 mmol) was added, in one portion, to a solution of the alcohol (7) ($10 \mathrm{~g}, 50.5 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ and the resulting mixture was stirred under argon for 42 h at room temperature. The manganese salts were removed by filtration through a plug of silica gel and washed with anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{ml})$. The resulting yellow solution of the crude aldehyde (8) was dried over freshly activated 4-A sieves (6 g) and used in the next step without further purification.
erythro-Aldol Compound (10).-To a cooled $\left(-5^{\circ} \mathrm{C}\right)$ and stirred solution of the propionyl oxazolidinone (9) ${ }^{14,43}(11.8 \mathrm{~g}$, 50.5 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ was added dropwise, under argon, a solution of 9-BBN-OTf ${ }^{44}(15 \mathrm{~g}, 11.7 \mathrm{ml}, 55.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ followed by dry ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(10.6 \mathrm{ml}, 60.6$ $\mathrm{mmol})$ at such a rate as to keep the temperature below $-2^{\circ} \mathrm{C}$. Stirring was continued at this temperature for 1 h before the solution was cooled to $-76^{\circ} \mathrm{C}$ and the aldehyde (8) was added dropwise over 2 h . After being stirred for 1 h at $-76^{\circ} \mathrm{C}$ and 1 h at $25^{\circ} \mathrm{C}$, the solution was poured into 10% aqueous $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ $(170 \mathrm{ml})$ and the organic phase was decanted off. The aqueous solution was extracted once with ether (120 ml) and the combined organic extracts were concentrated under vacuum. The remaining yellow oil was dissolved in $\mathrm{MeOH}(180 \mathrm{ml})$ and oxidized at $0{ }^{\circ} \mathrm{C}$ with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{pH} 7$ phosphate buffer ($1: 1$, $110 \mathrm{ml})$ for 1 h . Water (100 ml) was added and the MeOH removed at reduced pressure (temp. below $30^{\circ} \mathrm{C}$). The aqueous solution was extracted with ether ($2 \times 250 \mathrm{ml}$) and the organic phases were washed with 5% aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, brine (90 ml), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. Crystallization from hexane -20% EtOAc (two crops, white needles) and column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-5 \% \mathrm{Et}_{2} \mathrm{O}\right)$ of the mother liquids gave compound ($\mathbf{1 0}$) ($14.1 \mathrm{~g}, 65 \%$) as a white solid, m.p. $106.5-108{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+14.50^{\circ}\left(c 0.92\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ $3600-3250,2990,2940,2920,2880,1780,1685,1455$, $1385,1365,1340,1150,1120,1090,1070,1030,885$, and 860 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 7.45-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.43(1 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}), 5.71(1 \mathrm{H}, \mathrm{d}$, $\left.J 7.2 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 4.78\left(1 \mathrm{H}, \mathrm{qn}, J 6.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 4.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $13-\mathrm{H}), 4.01\left(1 \mathrm{H}, \mathrm{dq}, J 7.0, J^{\prime} 3.2 \mathrm{~Hz}, 12-\mathrm{H}\right), 3.15(1 \mathrm{H}, \mathrm{d}, J 2.8 \mathrm{~Hz}$, OH), 1.85 ($3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}$), 1.17 ($3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{OHz}, 12-\mathrm{Me}$), and $0.90\left(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{Me}\right)$; $\delta_{\mathrm{C}} 176.3,152.4,146.2,133.2$, $128.9,125.5,78.9,75.0,54.8,30.5,21.6,14.2$, and $10.1 ; m / z$ (e.i.) 302 ($M^{+}-127,0.3 \%$), 233 (1), 196 (3), and 57 (100) (Found: C,
47.58; $\mathrm{H}, 4.68 ; \mathrm{N}, 3.33 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{INO}_{4}$ requires $\mathrm{C}, 47.57 ; \mathrm{H}, 4.70$; N, 3.26%).

Silylated Aldol Compound (11).-TBDMS-OTf ($5.43 \mathrm{ml}, 23.6$ mmol) was added dropwise via cannula over 10 min to a cooled $\left(-5{ }^{\circ} \mathrm{C}\right)$ and stirred solution of the aldol compound $(10)(6.75 \mathrm{~g}$, 15.75 mmol) and dry 2,6 -lutidine ($4.6 \mathrm{ml}, 39.37 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$. After being stirred at $0^{\circ} \mathrm{C}$ for a further 2 h , the mixture was quenched with water (60 ml), diluted with ether (150 ml), washed with $1 \mathrm{~m} \mathrm{HCl}(60 \mathrm{ml}), 5 \%$ aqueous NaHCO_{3} $(60 \mathrm{ml})$, and brine (60 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Column chromatography of the remaining residue (silica gel, hexane- $5 \% \quad \mathrm{Et}_{2} \mathrm{O}$) gave the silylated compound (11) ($8.73 \mathrm{~g}, 98 \%$) as a colourless viscous oil; $[\alpha]_{\mathrm{D}}$ $-11.2^{\circ}\left(c 0.96\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max. }}$.film) $3060,2960,2930,2880$, $2860,1780,1700,1610,1455,1350,1260,1230,1190$, $1150,1120,1090,1025,960,870,840$, and $775 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 7.45-$ $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.22(1 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}), 5.67\left(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $4.61\left(1 \mathrm{H}, \mathrm{qn}, J 6.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 4.40(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, 13-\mathrm{H}), 4.08$ (1 $\mathrm{H}, \mathrm{qn}, J 7.3 \mathrm{~Hz}, 12-\mathrm{H}), 1.85(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}), 1.22(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}$, 12-Me), $0.91\left(9 \mathrm{H}, \mathrm{s}\right.$, 'BuSi), $0.90\left(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{Me}\right), 0.07$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$), and $0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$; $\delta_{\mathrm{C}} 174.21$ (s), 152.75 (s), 148.82 (s), 133.04 (s), 128.76 (d), 128.70 (d), 79.18 (d), 79.04 (d), 78.72 (d), 55.47 (d), 42.96 (d), 25.72 (q), 19.83 (q), 18.18 (s), 14.31 (q), 12.86 (q), -4.86 (q), and -5.26 (q); m / z (e.i.) $486\left(M^{+}\right.$ - 57, 66%), 442 (32), 314 (60), 290 (100), 246 (92), and 190 (47) [Found: $m / z 486.0604 . \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{INO}_{4} \mathrm{Si}\left(M^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ requires $m / z 486.0598]$.

Preparation of Hydroxyester (12).-Sodium methoxide in $\mathrm{MeOH}(0.40 \mathrm{~m}, 134 \mathrm{ml})$ was added, under nitrogen, over 12 min to a cooled $\left(-25^{\circ} \mathrm{C}\right)$ and stirred solution of the aldol compound (10) ($20.8 \mathrm{~g}, 48.48 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{ml})$. After being stirred for a further 8 min , the reaction mixture was neutralized by addition of amberlite IR-118. The amberlite was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{ml})$, then the combined organic solutions were washed once with brine (100 $\mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent followed by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-5 \% \mathrm{Et}_{2} \mathrm{O}$) gave the required ester (12) $(13.36 \mathrm{~g}, 97 \%)$ as a colourless liquid; $[\alpha]_{\mathrm{D}}+$ 19.8° (c 0.64 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) 3650-3 200, 2980,2945 , $1725,1615,1455,1435,1380,1350,1260,1200,1170,1120$, 1095,1070 , and $1035 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}} 6.38(1 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{s}$, $13-\mathrm{H}), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.84-2.68(2 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}$ and OH$)$, $1.79(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me})$, and $1.12(3 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}, 12-\mathrm{Me}) ; \delta_{\mathrm{C}} 175.74$ (C-11), 145.93 (C-14), 79.32 (C-15), 75.77 (C-13), 52.10 (OMe), 42.19 (C-12), 21.17 ($14-\mathrm{Me}$), and 10.51 ($12-\mathrm{Me}$); m / z (e.i.) 267 ($M^{+}-17,41 \%$), 197 (47), 157 (100), 139 (70), 125 (28), 88 (75), and 69 (45) [Found: m / z 266.9799. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{IO}_{2}\left(M^{+}-\mathrm{OH}\right)$ requires m / z 266.9882].

Silylated Hydroxyester (13a).-To a cooled $\left(-5^{\circ} \mathrm{C}\right)$ and stirred solution of the hydroxyester (12) ($12.83 \mathrm{~g}, 45.17 \mathrm{mmol}$) and dry 2,6 -lutidine ($12.7 \mathrm{ml}, 112.9 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ ml) was added TBDMS-OTf ($15.6 \mathrm{ml}, 67.8 \mathrm{mmol}$) dropwise over 12 min under nitrogen. After being stirred for 1.5 h at this temperature, the reaction mixture was quenched with water $(150 \mathrm{ml})$, diluted with ether $(400 \mathrm{ml})$, washed with $1 \mathrm{~m} \mathrm{HCl}(150$ ml), 5% aqueous $\mathrm{NaHCO}_{3}(150 \mathrm{ml})$, and brine (150 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography (silica gel, hexane $-7 \% \mathrm{Et}_{2} \mathrm{O}$) of the remaining residue afforded (13a) $(18.0 \mathrm{~g}, 100 \%)$ as a colourless liquid; $[\alpha]_{\mathrm{D}}+18.6^{\circ}$ (c 0.66 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$. (film) 2950, $2930,2860,1740,1470,1460$, $1435,1360,1260,1195,1165,1080,1025,880,840$, and 780 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 6.19(1 \mathrm{H}, \mathrm{t}, J 1.0 \mathrm{~Hz}, 15-\mathrm{H}), 4.34(1 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 13-$ H), $3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.63(1 \mathrm{H}, \mathrm{qn}, J 6.9 \mathrm{~Hz}, 12-\mathrm{H}), 1.79(3 \mathrm{H}$, d, J $1.0 \mathrm{~Hz}, 14-\mathrm{Me}$), $1.14(3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, 12-\mathrm{Me}), 0.88(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{\mathrm{t}} \mathrm{BuSi}\right), 0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and $-0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}} 174.30$
(C-11), 148.29 (C-14), 78.96 (C-15*), 78.62 (C-13*), 51.68 (OMe), 44.90 (C-12), 25.68 ('BuSi), 19.91 (14-Me), 18.14 (${ }^{\text {'BuSi), }}$ 12.11 ($12-\mathrm{Me}$), $-4.82(\mathrm{MeSi})$, and $-5.36(\mathrm{MeSi}) ; m / z$ (e.i.) 341 ($M^{+}-57,85 \%$), 311 (15), 214 (23), 145 (28), and 89 (100) [Found: $m / z 341.0102 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{IO}_{3} \mathrm{Si}\left(M^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ requires $m / z 341.0070]$.

Preparation of Aldehyde (14).-DIBAL-H in toluene ($1 \mathrm{~m}, 1.9$ $\mathrm{ml})$ was added dropwise to a cooled $\left(-80^{\circ} \mathrm{C}\right)$ and stirred solution of the ester (13 aa) ($480 \mathrm{mg}, 1.2 \mathrm{mmol}$) in anhydrous toluene (12 ml) at such a rate as to keep the temperature below $-77^{\circ} \mathrm{C}(c a .10 \mathrm{~min})$. After being stirred at $-82^{\circ} \mathrm{C}$ for 1 h the reaction was quenched by dropwise addition of $\mathrm{MeOH}(1 \mathrm{ml})$ keeping the temperature below $-78^{\circ} \mathrm{C}$. Citric acid (10% aqueous solution, 10 ml) was then added, the mixture was allowed to warm to room temperature and products were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography (silica gel, hexane- $13 \% \mathrm{Et}_{2} \mathrm{O}$) of the residue gave the aldehyde (14) ($435 \mathrm{mg}, 98 \%$) as a colourless liquid; $[\alpha]_{\mathrm{D}}$ $+40.0^{\circ}\left(c 0.60\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }}$. (film) 2 960, $2930,2860,1730$, $1470,1460,1390,1380,1360,1255,1140,1110,1080,1035$, 840 , and $780 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.67(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}$, $11-\mathrm{H}), 6.28(1 \mathrm{H}, \mathrm{t}, J 1.0 \mathrm{~Hz}, 15-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J 4.6 \mathrm{~Hz}$, $13-\mathrm{H}), 2.57-2.46(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.79(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, 14-\mathrm{Me})$, $1.06(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 12-\mathrm{Me}), 0.88\left(9 \mathrm{H}, \mathrm{s},{ }^{\text {' }} \mathrm{BuSi}\right), 0.04(3 \mathrm{H}, \mathrm{s}$, MeSi), and $0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$; $\delta_{\mathrm{C}} 203.43$ (C-11), $147.35(\mathrm{C}-14)$, 79.16 (C-15*), 76.27 (C-13*), 50.39 (C-12), 25.69 ('BuSi), 21.00 $(14-\mathrm{Me}), 18.13\left({ }^{(} \mathrm{BuSi}\right), 8.21(12-\mathrm{Me}),-4.69(\mathrm{MeSi})$, and -5.03 (MeSi): m / z (e.i.) $353\left(M^{+}-15,15 \%\right.$), 311 (100), 184 (34), and 115 (15) [Found: $m / z 310.9991 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{IO}_{2} \mathrm{Si}\left(M^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ requires $m / z 310.9964$].
(Z)- α, β-Unsaturated Ester (15) $-\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$ in toluene $(0.5 \mathrm{M}, 28 \mathrm{ml})$ was added dropwise to a cooled $\left(-80^{\circ} \mathrm{C}\right)$ and stirred solution of bis(2,2,2-trifluoroethyl)methoxycarbonylmethylphosphonate ($4.66 \mathrm{~g}, 14.65 \mathrm{mmol}$) and 18 -crown-6 (8.42 $\mathrm{g}, 31.85 \mathrm{mmol}$) in anhydrous THF (200 ml), under nitrogen over 15 min . The mixture was stirred at $-80^{\circ} \mathrm{C}$ for another 10 min before the aldehyde (14) ($4.69 \mathrm{~g}, 12.74 \mathrm{mmol}$) in anhydrous THF $(25 \mathrm{ml})$ was added dropwise over $15 \mathrm{~min}\left(<-78^{\circ} \mathrm{C}\right)$. Stirring was continued at this temperature for 1 h and the reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{ml})$ and allowed to warm to room temperature. The organic phase was decanted off and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 200 \mathrm{ml})$. The combined organic solutions were washed once with brine (150 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography (silica gel, hexane- $4 \% \mathrm{Et}_{2} \mathrm{O}$) of the residue gave the required (Z)-olefin (15) $(5.3 \mathrm{~g}, 98 \%)$ as a colourless liquid; $[x]_{\mathrm{D}}+118.7^{\circ}\left(c 0.54\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max }}$. (film) 2 960, 2 930, 2 860, 1 725, 1 640, $1470,1460,1440,1405,1375$, $1360,1260,1200,1180,1080,1030,1005,940,880,865,840$, and $775 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.14(1 \mathrm{H}, \mathrm{t}, J 1.0 \mathrm{~Hz}, 15-\mathrm{H}), 5.98(1 \mathrm{H}, \mathrm{dd}, J$ $\left.11.5, J^{\prime} 10.2 \mathrm{~Hz}, 11-\mathrm{H}\right), 5.73\left(1 \mathrm{H}, \mathrm{dd}, J 11.5, J^{\prime} 0.8 \mathrm{~Hz}, 10-\mathrm{H}\right)$, $4.03(1 \mathrm{H}, \mathrm{d}, J 5.7 \mathrm{~Hz}, 13-\mathrm{H}), 3.71(3 \mathrm{H}, \mathrm{s}$, OMe), $3.76-3.64(1 \mathrm{H}$, $\mathrm{m}, 12-\mathrm{H}), 1.77(3 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, 14-\mathrm{Me}), 0.98(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}$, $12-\mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{\prime} \mathrm{BuSi}\right), 0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and $-0.05(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeSi}) ; \delta_{\mathrm{C}} 166.50(\mathrm{C}-9), 152.45$ (C-11), 149.18 (C-14), 118.55 (C10), 80.56 (C-15*), 78.04 (C-13*), 51.13 (OMe), $36.85(\mathrm{C}-12)$, 25.77 ('BuSi), 20.38 ($14-\mathrm{Me}$), 18.20 (${ }^{(} \mathrm{BuSi}$), 14.89 ($12-\mathrm{Me}$), $4.79(\mathrm{MeSi})$, and $-5.20(\mathrm{MeSi}) ; m / z$ (e.i.) $367\left(M^{+}-57,21 \%\right)$, 311 (100), 171 (11), 127 (11) [Found: $m / z \quad 367.0275$. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{IO}_{3} \mathrm{Si}\left(M^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ requires $\left.m / z, 367.0226\right]$.
α, β-Unsaturated Lactone (16).-A solution of the silylated hydroxyester (15) ($5.74 \mathrm{~g}, 13.53 \mathrm{mmol}$) in $80 \% \mathrm{AcOH}-\mathrm{TFA}$ $(5: 1,240 \mathrm{ml})$ was heated at $85-90^{\circ} \mathrm{C}$ for 2 h 20 min under nitrogen. After being cooled to room temperature, solvents were removed under reduced pressure. Flash chromatography of the
residue (silica gel, hexane- $75 \% \mathrm{Et}_{2} \mathrm{O}$) gave the title compound $(3.43 \mathrm{~g}, 91 \%)$ as a colourless liquid; $[\alpha]_{\mathrm{D}}+320.4^{\circ}$ (c 0.44 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $3090,2980,2930,2880,1730,1630$, $1450,1380,1370,1280,1245,1110,1065,1000,820$, and 760 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 7.00\left(1 \mathrm{H}, \mathrm{dd}, J 9.6, J^{\prime} 6.3 \mathrm{~Hz}, 11-\mathrm{H}\right), 6.61(1 \mathrm{H}, \mathrm{q}, J 1.3$ $\mathrm{Hz}, 15-\mathrm{H}), 6.01(1 \mathrm{H}, \mathrm{d}, J 9.6 \mathrm{~Hz}, 10-\mathrm{H}), 4.90(1 \mathrm{H}, \mathrm{br}$ d, $J 2.9 \mathrm{~Hz}$, $13-\mathrm{H}), 2.62\left(1 \mathrm{H}, \mathrm{dqn}, J 7.0, J^{\prime} 3.4 \mathrm{~Hz}, 12-\mathrm{H}\right), 1.84(3 \mathrm{H}, \mathrm{s}$, $14-\mathrm{Me})$, and $0.94(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 12-\mathrm{Me})$; $\delta_{\mathrm{C}} 163.35(\mathrm{C}-9)$, 150.96 (C-11), 140.85 (C-14), 119.92 (C-10), 82.10 (C-15*), 80.24 (C-13*), 31.28 (C-12), 21.80 (14-Me), and 11.90 ($12-\mathrm{Me}$); m / z (e.i.) $278\left(M^{+}, 11 \%\right), 151(26), 95(11), 82$ (100), and 69 (30) (Found: $m / z 277.9758 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{IO}_{2}$ requires $m / z, 277.9804$).

Preparation of Lactol (17).-Reduction of the lactone (16) $(3.43 \mathrm{~g}, 12.33 \mathrm{mmol})$ with DIBAL-H in toluene ($1 \mathrm{~m}, 19.7 \mathrm{ml}$) in toluene at $-80^{\circ} \mathrm{C}$, using the same conditions described for the aldehyde (14), gave the lactol (17) ($3.4 \mathrm{~g}, 99 \%$) as a $11.5: 1$ mixture of α and β anomers after flash chromatography on silica gel (hexane- $45 \% \mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}+252.8^{\circ}$ (c 0.64 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $3600-3100,3090,3040,2970,2930,2880,1660$, $1620,1450,1380,1370,1250,1190,1150,1095,1060,1020$, $925,900,820,765$, and $745 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.32-6.30(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H})$, $6.07\left(1 \mathrm{H}, \mathrm{dd}, J 9.9, J^{\prime} 5.8 \mathrm{~Hz}, 11-\mathrm{H}\right), 5.74\left(1 \mathrm{H}\right.$, ddd, $J 9.9, J^{\prime} 2.8$, $\left.J^{\prime \prime} 1.2 \mathrm{~Hz}, 10-\mathrm{H}\right), 5.44(1 \mathrm{H}$, br s, $9-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 13-\mathrm{H}), 2.66$ $(1 \mathrm{H}, \mathrm{d}, J 4.6 \mathrm{~Hz}, \mathrm{OH}), 2.64-2.22(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.81(3 \mathrm{H}, \mathrm{s}$, $14-\mathrm{Me}$), and 0.78 ($3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 12-\mathrm{Me}$); $\delta_{\mathrm{C}} 144.74(\mathrm{C}-14)$, 135.00 (C-11), 124.58 (C-10), 89.51 (C-9), 77.50 (C-15), 72.86 (C13), 30.99 (C-12), 22.28 ($14-\mathrm{Me}$), and 12.59 ($12-\mathrm{Me}$); m / z (e.i.) $263\left(M^{+}-17,7 \%\right), 197$ (9), 136 (13), 91 (32), and 84 (100) [Found: $m / z, 262.9935 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{IO}\left(M^{+}-\mathrm{OH}\right)$ requires m / z, 262.9933].

Methyl Acetal (2).-Pyridinium toluene-p-sulphonate (294 $\mathrm{mg}, 1.17 \mathrm{mmol}$) was added to a solution of the hemiacetal (17) ($3.28 \mathrm{~g}, 11.71 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(120 \mathrm{ml}$) and the resulting colourless mixture was stirred at room temperature for 16 h under nitrogen. The solvent was removed under reduced pressure and the resulting residue was flash chromatographed on silica gel (hexane- $10 \% \mathrm{Et}_{2} \mathrm{O}$) to give a $20: 1$ mixture of α and β anomers of the methyl acetal (2) ($3.27 \mathrm{~g}, 98 \%$) as a colourless liquid; $[x]_{\mathrm{D}}+215.8^{\circ}\left(c \cdot 0.62 \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max. }}$. (film) 3090,3040 , $2970,2930,2890,2820,1660,1620,1450,1400,1375,1360$, $1340,1250,1190,1110,1090,1045,1000,970,900,820,765$, and $730 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.35-6.34(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 6.04(1 \mathrm{H}, \mathrm{dd}, J 10.0$, $\left.J^{\prime} 5.8 \mathrm{~Hz}, 11-\mathrm{H}\right), 5.69\left(1 \mathrm{H}\right.$, ddd, $\left.J 10.0, J^{\prime} 2.9, J^{\prime \prime} 1.1 \mathrm{~Hz}, 10-\mathrm{H}\right)$, $4.89(1 \mathrm{H}, \mathrm{d}, J 2.9 \mathrm{~Hz}, 9-\mathrm{H}), 4.43(1 \mathrm{H}$, br s, 13-H), $3.39(3 \mathrm{H}, \mathrm{s}$, $9-\mathrm{OMe}), 2.67-2.20(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.79(3 \mathrm{H}, \mathrm{d}, J 0.9 \mathrm{~Hz}, 14-$ Me), and 0.78 ($3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 12-\mathrm{Me}$); $\delta_{\mathrm{C}} 144.97$ (C-14), 134.99 (C-11), 123.99 (C-10), 96.10 (C-9), 77.13 (C-15), 72.71 (C-13), 55.32 ($9-\mathrm{OMe}$), 31.08 (C-12), 22.14 ($14-\mathrm{Me}$), and 12.54 ($12-\mathrm{Me}$); m / z (c.i.) $294\left(M^{+}, 11 \%\right), 263(23), 152(55), 137(56), 135$ (100), 133 (94), 106 (70), and 91 (75) (Found: $m / z 294.0123 . \mathrm{C}_{10} \mathrm{H}_{15}{ }^{-}$ IO_{2} requires $m / z, 294.0117$).

Silylated β-Hydroxy Acid (13b).-Hydrogen peroxide (30%, 4 ml, ca. 40 mmol) was added dropwise over 5 min to a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of the acyl oxazolidinone (11) $(5.33 \mathrm{~g}$, 9.79 mmol) in THF-water ($4: 1 ; 50 \mathrm{ml}$) under nitrogen, followed by a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.82 \mathrm{~g}, 19.6 \mathrm{mmol})$ in water $(25 \mathrm{ml})$ over 7 min . After being stirred at $5^{\circ} \mathrm{C}$ for 2 h , a solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(5.5 \mathrm{~g})$ in water (40 ml) was added dropwise and stirring was continued at $7^{\circ} \mathrm{C}$ for 30 min . The resulting reaction mixture (pH 13) was buffered to pH 9 with 5% aqueous NaHCO_{3} and the THF removed. The basic aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 100 \mathrm{ml})$ to give a mixture of the oxazolidinone chiral auxiliary and the required acid. After drying over MgSO_{4}, the solvent was removed under vacuum and the residue purified by flash chromatography (silica gel,
$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-40 \% \mathrm{Et}_{2} \mathrm{O}\right)$ to give the acid (13b) $(3.16 \mathrm{~g}, 84 \%)$ as a colourless viscous oil.

Preparation of the Ester (13a) by Methylation of the Acid (13b).-Sodium hydride (80% dispersion in oil, $290 \mathrm{mg}, 9.7$ $\mathrm{mmol})$ was added to a cooled $\left(-15{ }^{\circ} \mathrm{C}\right)$ and stirred solution of the acid (13b) ($3.1 \mathrm{~g}, 8.06 \mathrm{mmol}$) in dry THF (40 ml), dry DMF (15 ml), and dry MeI ($2.5 \mathrm{ml}, 40.3 \mathrm{mmol}$) under nitrogen. After being stirred at $-10^{\circ} \mathrm{C}$ for 0.5 h and at room temperature for 2.5 h , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{ml})$, washed with water (50 ml) and brine (35 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography (silica gel, hexane-7\% $\mathrm{Et}_{2} \mathrm{O}$) of the remaining yellow liquid afforded the methyl ester (13a) ($3.18 \mathrm{~g}, 99 \%$) as a colourless liquid.

2-Hydroxy-5-methoxybenzaldehyde (19).-A hot solution of $\mathrm{NaOH}(640 \mathrm{~g}, 16 \mathrm{~mol})$ in water (800 ml) was added to p methoxyphenol ($250 \mathrm{~g}, 2 \mathrm{~mol}$) followed by dropwise addition of chloroform ($320 \mathrm{ml}, c a .2 \mathrm{~mol}$) at such a rate as to keep the internal temperature at $70-80^{\circ} \mathrm{C}(6.5 \mathrm{~h})$. Stirring was continued for a further 30 min , and after being cooled to room temperature, the reaction mixture was acidified with $5 \mathrm{M} \quad \mathrm{H}_{2} \mathrm{SO}_{4}$ with formation of a large amount of precipitate. The solid was filtered off, the aqueous solution extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times 200 \mathrm{ml})$ and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The remaining dark brown oil was distilled under vacuum (b.p. ca. $90^{\circ} \mathrm{C}$ at 2 mmHg) to give a mixture of the required aldehyde and starting phenol. This mixture was vigorously shaken with a saturated aqueous solution of sodium metabisulphite (450 ml) for 30 min . The mixture was allowed to stand for 1 h and the solid bisulphite addition compound was filtered off and washed with cold absolute $\mathrm{EtOH}(100 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \times 250 \mathrm{ml})$. $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(500$ ml) was added to the solid and the mixture refluxed for 30 min . The acid phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times 200 \mathrm{ml})$ and the organic solutions were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The remaining liquid was distilled at reduced pressure (b.p. 101$102^{\circ} \mathrm{C}$ at 2 mmHg) to give the title compound ($147 \mathrm{~g}, 48 \%$) as a yellow liquid (lit., ${ }^{45}$ b.p. $133^{\circ} \mathrm{C}$ at 15 mmHg).

2-Hydroxy-5-methoxy-3-nitrobenzaldehyde (20).-A solution of nitric acid $(70 \%, 80 \mathrm{ml}, 1.28 \mathrm{~mol})$ in acetic acid (300 ml) was added dropwise to a cooled and stirred solution of the aldehyde (19) ($130 \mathrm{~g}, 0.85 \mathrm{~mol}$) in $\mathrm{AcOH}(650 \mathrm{ml})$ at such a rate as to maintain the temperature between $10-15^{\circ} \mathrm{C}(2.5 \mathrm{~h})$. After being stirred for another 45 min , water (1.5 l) was added and the solid was filtered off and crystallized from AcOH to give the title compound ($118 \mathrm{~g}, 70 \%$) as yellow needles, m.p. $132-133{ }^{\circ} \mathrm{C}$ [lit., ${ }^{19}$ m.p. $\left.132^{\circ} \mathrm{C}(\mathrm{AcOH})\right] ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.8(1 \mathrm{H}, \mathrm{s}$, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 10.4(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.8$ and $7.7(2 \mathrm{H}, \mathrm{AB}$ system, J $3.5 \mathrm{~Hz}, \mathrm{ArH}$), and $3.9(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$.

2,5-Dimethoxy-3-nitrobenzaldehyde (21).-Anhydrous

 $\mathrm{K}_{2} \mathrm{CO}_{3}(100.5 \mathrm{~g}, 727 \mathrm{mmol})$ followed by $\mathrm{Me}_{2} \mathrm{SO}_{4}(76 \mathrm{ml}, 800$ mmol) was added to a solution of 2-hydroxy-5-methoxy-3nitrobenzaldehyde (20) ($71.6 \mathrm{~g}, 363.5 \mathrm{mmol}$) in dry DMF (800 ml) and the mixture was stirred at room temperature for 16 h . As starting phenol still remained, more $\mathrm{Me}_{2} \mathrm{SO}_{4}(50 \mathrm{ml})$ was added, followed after 3 h by a further portion of $\mathrm{Me}_{2} \mathrm{SO}_{4}(30 \mathrm{ml})$. After further 2.5 h , the solvents were removed under vacuum, the remaining residue was poured into water (21) and products extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \times 200 \mathrm{ml})$. The combined organic solutions were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and the residue crystallized from CHCl_{3} to give the title compound (75.5 g , 99%) as yellow needles, m.p. $115-116.5^{\circ} \mathrm{C}$ [lit., ${ }^{19}$ m.p. $113{ }^{\circ} \mathrm{C}$ $\left.\left(\mathrm{CHCl}_{3}\right)\right] ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.4(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.6$ and $7.5(2$ H, AB system, $J 3 \mathrm{~Hz}, \mathrm{ArH}), 4.0(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $3.9(3 \mathrm{H}, \mathrm{s}$, OMe).erythro-Aldol Compound (22).-To a cooled ($-75^{\circ} \mathrm{C}$) and stirred solution of the propionyl oxazolidinone (9) $(18.8 \mathrm{~g}, 80.6$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{ml})$ was added dropwise $\mathrm{Et}_{2} \mathrm{BOTf}^{46}$ $(19.3 \mathrm{~g}, 88.7 \mathrm{mmol})$ followed by dry $\mathrm{Et}_{3} \mathrm{~N}(14.2 \mathrm{ml}, 101.6 \mathrm{mmol})$ over 15 min and the resulting pale yellow solution was stirred at $-75^{\circ} \mathrm{C}$ for 0.5 h and at $-3^{\circ} \mathrm{C}$ for 1 h under argon. After being recooled down to $-73^{\circ} \mathrm{C}$, the aldehyde (21) $(17.0 \mathrm{~g}, 80.6 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ was added over 15 min and the mixture was vigorously stirred at $-72^{\circ} \mathrm{C}$ for 0.5 h and at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with pH 7 phosphate buffer (160 $\mathrm{ml})$, diluted with $\mathrm{MeOH}(650 \mathrm{ml})$, and oxidized at $0^{\circ} \mathrm{C}$ with $\mathrm{MeOH}-30 \% \mathrm{H}_{2} \mathrm{O}_{2}(2: 1 ; 240 \mathrm{ml})$ for 1 h . Volatiles were removed in vacuo and the products extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{ml})$, washed with 5% aqueous $\mathrm{NaHCO}_{3}(1 \times 85 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give a yellow solid. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$ (three crops) gave the title compound (31.5 g , 88%) as yellow crystals, m.p. $201-203{ }^{\circ} \mathrm{C} ;[x]_{\mathrm{D}}+82^{\circ}$ (c 2.0 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3500,2960,1790,1700,1540$, and $1350 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 7.45-7.28(7 \mathrm{H}, \mathrm{m}$, ArH and Ph), $5.69(1 \mathrm{H}, \mathrm{d}, J$ $\left.7.3 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 5.41(1 \mathrm{H}, \mathrm{t}, J 3.0 \mathrm{~Hz}, 21-\mathrm{H}), 4.82(1 \mathrm{H}, \mathrm{qn}, J 6.8 \mathrm{~Hz}$, $\left.4^{\prime}-\mathrm{H}\right), 4.05\left(1 \mathrm{H}, \mathrm{dq}, J 7.1, J^{\prime} 3.0 \mathrm{~Hz}, 20-\mathrm{H}\right), 3.88(1 \mathrm{H}, \mathrm{d}, J 2.4 \mathrm{~Hz}$, OH), 3.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 1.19 ($3 \mathrm{H}, \mathrm{d}, J 7.1$ $\mathrm{Hz}, 20-\mathrm{Me})$, and $0.91\left(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{Me}\right) ; \delta_{\mathrm{C}}(25.2 \mathrm{MHz}$, CDCl_{3}) 179.4 (s), 155.2 (s), 152.2 (s), 144.4 (s), 143.5 (s), 138.2 (s), 133.1 (s), 129.0 (d), 128.8 (d), 125.7 (d), 119.4 (d), 109.2 (d), 79.1 (d), 68.4 (d), 62.7 (q), 56.1 (q), 54.8 (d), 42.5 (d), 14.3 (q), and 10.9 (q); m / z (e.i.) $444\left(M^{+}, 1 \%\right), 133$ (27), 107 (100), and 57 (89) (Found: $m / z 444.1531 ; \mathrm{C}, 59.60 ; \mathrm{H}, 5.30 ; \mathrm{N}, 6.20 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires $m / z, 444.1533 ; \mathrm{C}, 59.45 ; \mathrm{H}, 5.45 ; \mathrm{N}, 6.30 \%$).

Methyl β-Hydroxy Ester (23).-Removal of the chiral auxiliary from (22) $(21.5 \mathrm{~g}, 48.4 \mathrm{mmol})$ with $\mathrm{NaOMe}(0.4 \mathrm{~m}$ in $\mathrm{MeOH} ; 133.3 \mathrm{ml}, 53.3 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$, using the same conditions described for compound (10), gave the methyl ester (23) ($14.1 \mathrm{~g}, 97 \%$) as a yellow viscous oil after flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-5 \% \mathrm{Et}_{2} \mathrm{O}\right) ;[x]_{\mathrm{D}}+3.8^{\circ}$ (c 11.3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$. (film) $3520,1740,1540$, and 1360 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 7.38(1 \mathrm{H}, \mathrm{d}, J 1.3 \mathrm{~Hz}, \mathrm{ArH}), 7.30(1 \mathrm{H}, \mathrm{d}, J 1.3 \mathrm{~Hz}, \mathrm{ArH})$, $5.42(1 \mathrm{H}, \mathrm{t}, J 2.8 \mathrm{~Hz}, 21-\mathrm{H}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.84(3 \mathrm{H}, \mathrm{s}$, OMe), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.39(1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}, \mathrm{OH}), 2.98(1 \mathrm{H}$, dq, $J 7.2, J^{\prime} 2.8 \mathrm{~Hz}, 20-\mathrm{H}$), and $1.04(3 \mathrm{H}, \mathrm{d}, J 7.2 \mathrm{~Hz}, 20-\mathrm{Me}) ; m / z$ (e.i.) $299\left(M^{+}, 11 \%\right), 212$ (74), and 88 (100) (Found: m / z 299.1016. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{7}$ requires $m / z, 299.1005$).

Preparation of Methyl Ether (24).-To a cooled ($-12^{\circ} \mathrm{C}$) and stirred solution of the hydroxy ester (23) ($13.96 \mathrm{~g}, 46.6$ mmol) in anhydrous THF (295 ml) and anhydrous DMF (98 $\mathrm{ml})$ was added $\mathrm{Me}_{2} \mathrm{SO}_{4}(8.9 \mathrm{ml}, 94 \mathrm{mmol})$ followed by NaH (80% dispersion in oil; $1.54 \mathrm{~g}, 51.3 \mathrm{mmol}$). The resulting mixture was stirred at $-3^{\circ} \mathrm{C}$ for 15 h under nitrogen before dry $\mathrm{Et}_{3} \mathrm{~N}$ ($26 \mathrm{ml}, 186.7 \mathrm{mmol}$) was added and stirring was continued for 0.5 h . Water (170 ml) was then added and the products were extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{ml})$, washed with brine $(1 \times 100$ $\mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography of the remaining residue (silica gel, hexane- $40 \% \mathrm{Et}_{2} \mathrm{O}$) afforded the methyl ether (24) $(13.2 \mathrm{~g}, 90 \%)$ as a yellow oil; $[\alpha]_{\mathrm{D}}+36.4^{\circ}$ (c 1.4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$. film) $1740,1540,1360$, and $1090 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}} 7.30(1 \mathrm{H}, \mathrm{d}, J 3.3 \mathrm{~Hz}, \mathrm{ArH}), 7.18(1 \mathrm{H}, \mathrm{d}, J 3.3 \mathrm{~Hz}, \mathrm{ArH}), 4.98$ ($1 \mathrm{H}, \mathrm{d}, J 4.6 \mathrm{~Hz}, 21-\mathrm{H}$), 3.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.29 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}$), $2.87\left(1 \mathrm{H}, \mathrm{dq}, J 7.1, J^{\prime}\right.$ $4.6 \mathrm{~Hz}, 20-\mathrm{H}$), and $1.08(3 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}, 20-\mathrm{Me}) ; \delta_{\mathrm{C}}(25.2 \mathrm{MHz}$, CDCl_{3}) 174.0 (s), 155.4 (s), 150.0 (s), 145.3 (s), 137.4 (s), 119.1 (d), 109.2 (d), 78.3 (d), 62.8 (q), 57.1 (q), 56.1 (q), 51.9 (q), 44.7 (d), and 10.7 (q); m / z (e.i.) $313\left(M^{+}, 11 \%\right.$), 253 (16), 226 (100), 196 (11), and 149 (22) (Found: $m / z 313.1175 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires $m / z 313.1161$).

2',5'-Dimethylpyrrole Compound (25).-To a solution of the

nitro compound (24) ($16.28 \mathrm{~g}, 54.42 \mathrm{mmol}$) in absolute EtOH $(300 \mathrm{ml})$ was added $10 \% \mathrm{Pd}$ on $\mathrm{C}(2.35 \mathrm{~g})$ and the mixture was hydrogenated at 1 atm for 2.5 h at room temperature. The catalyst was removed by filtration through Hyflo filter aid, washed with $\mathrm{EtOH}(150 \mathrm{ml})$, and the combined solvents were removed under vacuum to give the crude amine which was azeotropically dried with toluene $(1 \times 200 \mathrm{ml})$.

A solution of the above amine, acetonylacetone $(19.2 \mathrm{ml}$, 163.3 mmol), and isobutyric acid (3 ml) in toluene (350 ml) was refluxed for 65 h under nitrogen using a Dean-Stark apparatus. After being cooled to room temperature, the yellow solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(350 \mathrm{ml})$ and washed with 5% aqueous $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{ml})$. The aqueous phase was extracted once with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ and the combined organic solutions were washed once with brine $(150 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Column chromatography on silica gel (hexane$30 \% \mathrm{Et}_{2} \mathrm{O}$) of the remaining residue gave the pyrrole compound (25) $(17.8 \mathrm{~g}, 91 \%)$ as a pale yellow viscous oil; $[\alpha]_{\mathrm{D}}+46^{\circ}(c 0.2$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $2960,1740,1630,1490,1350,1240$, 1090 , and $1050 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.9(1 \mathrm{H}, \mathrm{d}, J 3$ $\mathrm{Hz}, 5-\mathrm{H}), 6.6(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}, 3-\mathrm{H}), 5.9(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.9(1 \mathrm{H}$, d, J $5 \mathrm{~Hz}, 21-\mathrm{H}), 3.8(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe})$, $3.30(3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}), 3.20(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 3.10-2.70(1 \mathrm{H}$, $\mathrm{m}, 20-\mathrm{H}), 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe})$, and 1.15 (3 $\mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, 20-\mathrm{Me}$); m / z (e.i.) $361\left(M^{+}, 100 \%\right), 274$ (71), and 59 (13) (Found: m / z 361.1889. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{5}$ requires m / z 361.1918).

Preparation of Alcohol (26).-To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of the ester (25) ($18.35 \mathrm{~g}, 50.80 \mathrm{mmol}$) in anhydrous THF (500 ml) was added solid $\mathrm{LiAlH}_{4}(1.92 \mathrm{~g}, 50.70 \mathrm{mmol})$ over 10 min under nitrogen. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h then excess of hydride was destroyed by dropwise addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (55 ml). The aluminium salts were filtered off and washed with THF $(1 \times 150 \mathrm{ml}), \mathrm{Et}_{2} \mathrm{O}(1 \times 150 \mathrm{ml})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 250 \mathrm{ml})$. The combined organic solutions were washed once with brine $(100 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Column chromatography (silica gel, hexane- $60 \% \mathrm{Et}_{2} \mathrm{O}$) of the residue afforded the title compound $(16.9 \mathrm{~g}, 100 \%$) as a colourless viscous oil which solidified on standing; $[\alpha]_{\mathrm{D}}+84.3^{\circ}$ (c 0.28 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}($ film $) 3500,2940,1610,1480,1230$, and 1050 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 6.97(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 5-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-\mathrm{H})$, $5.92(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.57(1 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 21-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}$, 4-OMe), 3.50 (2 H , br s, 19-H), 3.30 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}$), 3.21 (3 H , $\mathrm{s}, 1-\mathrm{OMe}), 2.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.01(3 \mathrm{H}, \mathrm{s}$, ArMe), $1.94-1.85(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H})$, and $1.05(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}$, $20-\mathrm{Me}) ; \delta_{\mathrm{c}} 155.68,147.93,135.26,131.50,129.63,128.00,114.50$, $111.98,106.30,105.95,80.32,65.76,60.04,57.47,55.70,41.99$, $12.98,12.54$, and $12.40 ; m / z$ (e.i.) $333\left(M^{+}, 21 \%\right), 274$ (33) and 69 (100) (Found: $m / z \quad 333.1930 . \quad \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}$ requires m / z 333.1940).

Aldehyde (27).-To a stirred solution of the alcohol (26) (16.9 $\mathrm{g}, 50.70 \mathrm{mmol})$ in dry DMSO (325 ml), dry THF (50 ml), and dry $\mathrm{Et}_{3} \mathrm{~N}(50 \mathrm{ml}, 360 \mathrm{mmol})$ was added portionwise solid $\mathrm{SO}_{3}-$ Py complex ($25 \mathrm{~g}, 157 \mathrm{mmol}$) over 30 min at room temperature under nitrogen. After a further 15 min , the mixture was acidified to pH 4 with 10% aqueous HCl (ice-water bath) and diluted with water (250 ml). The aqueous solution was extracted with hexane-EtOAc $(1: 1 ; 2 \times 250 \mathrm{ml})$ and the combined organic phases were washed with $10 \% \mathrm{HCl}(80 \mathrm{ml})$ and brine $(100 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting oil was purified by flash chromatography (silica gel, hexane- $20 \% \mathrm{Et}_{2} \mathrm{O}$) to give the aldehyde (27) ($14.9 \mathrm{~g}, 89 \%$) as a colourless viscous oil; $[x]_{\mathrm{D}}+69.3^{\circ}\left(c 0.54\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) 2980,2940 , $2825,1730,1610,1480,1450,1430,1400,1350,1230,1200$, 1080,1050 , and $1005 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 9.75(1 \mathrm{H}, \mathrm{d}, J 0.9 \mathrm{~Hz}, 19-\mathrm{H}), 6.95$
($1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 5-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 3-\mathrm{H}), 5.91(2 \mathrm{H}, \mathrm{s}$, ArH), $5.01(1 \mathrm{H}, \mathrm{d}, J 4.5 \mathrm{~Hz}, 21-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.33$ ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}$), 3.18 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), $2.69(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.09$ ($3 \mathrm{H}, \mathrm{s}$, ArMe), 1.99 ($3 \mathrm{H}, \mathrm{s}$, ArMe), and $1.08(3 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}$, $20-\mathrm{Me}) ; \delta_{\mathrm{C}} 203.15$ (d), 155.23 (s), 147.43 (s), 133.62 (s), 131.37 (s), 129.37 (s), 128.27 (s), 114.37 (d), 112.51 (d), 106.27 (d), 106.02 (d), 77.16 (d), 59.61 (q), 57.57 (q), 55.71 (q), 51.68 (d), 12.89 (q), 12.48 (q), and 8.3 (q); m / z (e.i.) $331\left(M^{+}, 36 \%\right), 274$ (31), 244 (16), 176 (38), 131 (100), 103 (54), and 77 (46) (Found: m / z 331.1788. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4}$ requires $m / z 331.1783$).
(E)- α, β-Unsaturated Ester (28).-A solution of the aldehyde (27) ($14.96 \mathrm{~g}, 45.17 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOMe}(30.2 \mathrm{~g}, 90.34$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (350 ml) was refluxed under nitrogen for 48 h . The solvent was removed under vacuum and the residue was passed through a plug of silica gel (eluting with $\mathrm{Et}_{2} \mathrm{O}$) to remove most of the unreacted phosphorane and triphenylphosphine oxide. Further flash chromatography purification (silica gel, hexane- $20 \% \mathrm{Et}_{2} \mathrm{O}$) gave the (E)-olefin (28) (17.40 g, 99.5%) as a colourless viscous oil; $[\alpha]_{\mathrm{D}}+70.0^{\circ}$ (c 0.36 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $2930,2825,1725,1655,1610,1590$, $1480,1450,1400,1340,1270,1225,1200,1175,1100,1050$, and $1005 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.90(1 \mathrm{H}, \mathrm{d}, J 3.3 \mathrm{~Hz}, 5-\mathrm{H}), 6.69(1 \mathrm{H}, \mathrm{dd}, J$ $\left.15.8, J^{\prime} 7.9 \mathrm{~Hz}, 19-\mathrm{H}\right), 6.64(1 \mathrm{H}, \mathrm{d}, J 3.3 \mathrm{~Hz}, 3-\mathrm{H}), 5.90(1 \mathrm{H}, \mathrm{d}, J$ $4.1 \mathrm{~Hz}, \operatorname{ArH}), 5.89(1 \mathrm{H}, \mathrm{d}, J 4.1 \mathrm{~Hz}, \operatorname{ArH}), 5.70(1 \mathrm{H}, \mathrm{dd}, J 15.8$, $\left.J^{\prime} 1.2 \mathrm{~Hz}, 18-\mathrm{H}\right), 4.49(1 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 21-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}$, 4-OMe), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}$), 3.37 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}$), 3.14 (3 H , $\mathrm{s}, 1-\mathrm{OMe}), 2.67(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H})$, 2.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 1.97 ($3 \mathrm{H}, \mathrm{s}$, ArMe), and $1.13(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 20-\mathrm{Me}) ; \delta_{\mathrm{C}} 166.83,155.15$, $150.70,148.25,134.60,131.21,129.40,128.29,120.94,114.71$, $111.91,106.07,105.80,80.21,59.57,57.26,55.63,51.34,43.23$, 15.06, 12.79, and $12.39 \mathrm{~m} / \mathrm{z}$ (e.i.) $387\left(M^{+}, 45 \%\right), 274(100)$, and 244 (17) (Found: $m / z, 387.2051 . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5}$ requires m / z, 387.2046).

Preparation of Ester (29).-To a solution of the α, β unsaturated ester (28) ($6.94 \mathrm{~g}, 17.92 \mathrm{mmol}$) in absolute EtOH $(175 \mathrm{ml})$ was added $10 \% \mathrm{Pd}$ on $\mathrm{C}(700 \mathrm{mg})$ and the mixture was hydrogenated at 1 atm for 30 min at room temperature. The catalyst was removed by filtration through hyflo filter aid and washed with $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}(1: 1 ; 250 \mathrm{ml})$, and solvents were then removed under vacuum. The remaining residue was purified by flash chromatography (silica gel, hexane- $20 \% \mathrm{Et}_{2} \mathrm{O}$) to give the title compound $(6.88 \mathrm{~g}, 99 \%)$ as a colourless viscous oil; $[\alpha]_{\mathrm{D}}+$ $64.2^{\circ}\left(c 0.58\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); v max. (film) $2935,2825,1740,1610$, $1590,1480,1450,1400,1340,1230,1200,1170,1100,1080$, 1050 , and $1010 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.92(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 5-\mathrm{H}), 6.64(1 \mathrm{H}$, d, $J 3.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.91(1 \mathrm{H}, \mathrm{d}, J 4.0 \mathrm{~Hz}, \mathrm{ArH}), 5.90(1 \mathrm{H}, \mathrm{d}, J 4.0$ $\mathrm{Hz}, \mathrm{ArH}), 4.38(1 \mathrm{H}, \mathrm{d}, J 5.6 \mathrm{~Hz}, 21-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.63$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}$), 3.26 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}$), 3.16 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), $2.44-2.23(2 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}), 2.08$ ($3 \mathrm{H}, \mathrm{s}, \operatorname{ArMe}$), 2.01 ($3 \mathrm{H}, \mathrm{s}$, ArMe $), 1.80-1.66(2 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}$ and $20-\mathrm{H}), 1.56-1.46(1 \mathrm{H}, \mathrm{m}$, $19-\mathrm{H})$, and $0.94(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 20-\mathrm{Me}) ; \delta_{\mathrm{C}} 174.13,155.18$, $148.32,135.70,131.27,129.40,128.33,114.14,112.19,106.05$, $105.82,80.99,59.58,57.38,55.66,51.46,38.74,31.98,28.39,14.59$, 12.86, and $12.52 ; m / z$ (e.i.) $389\left(M^{+}, 66 \%\right), 358(15), 274(100)$, 244 (15), and 83 (66) (Found: m / z 389.2193. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{5}$ requires $m / z, 389.2202$).

Preparation of Acid (30).-To a solution of the ester (29) (2.74 $\mathrm{g}, 7.04 \mathrm{mmol}$) in MeOH -water-THF $(3: 1: 1 ; 100 \mathrm{ml})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.77 \mathrm{~g}, 42.24 \mathrm{mmol})$ and the resulting yellow solution was stirred at room temperature for 24 h under nitrogen. The reaction mixture was acidified to pH 2 with aqueous $10 \% \mathrm{HCl}$, volatiles were removed in vacuo and the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the crude acid (30) $(2.70 \mathrm{~g}, 100 \%)$ which was used in the
next step without further purification after being azeotropically dried with toluene ($2 \times 50 \mathrm{ml}$).

Acyl Oxazolidinone (31).-(a) Preparation of the mixed anhydride. To a cooled $\left(-15^{\circ} \mathrm{C}\right)$ and stirred solution of the crude acid (30) ($2.25 \mathrm{~g}, 6.0 \mathrm{mmol}$) in anhydrous toluene (18 ml) was added dry $\mathrm{Et}_{3} \mathrm{~N}(0.84 \mathrm{ml}, 6.06 \mathrm{mmol})$ followed by pivaloyl chloride ($0.75 \mathrm{ml}, 6.06 \mathrm{mmol}$), and the resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ for 10 min and at $0^{\circ} \mathrm{C}$ for 40 min , under nitrogen.
(b) Preparation of the lithiated oxazolidinone. To a cooled $\left(-75^{\circ} \mathrm{C}\right)$ and stirred solution of (S)-4-isopropyl-2-oxazolidinone ${ }^{14}(1.78 \mathrm{~g}, 13.8 \mathrm{mmol})$ in anhydrous THF (42 ml) was added dropwise, under nitrogen, BuLi (1.6 m in hexane; $8.6 \mathrm{ml}, 13.8$ mmol) over 10 min and stirring was continued for a further 15 \min at the same temperature.
(c) Preparation of (31). To the above cooled suspension of the lithium salt of the oxazolidinone, the above mixed anhydride mixture was added dropwise and stirring was continued for 1 h at $-75^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(65 \mathrm{ml})$ was added, the mixture was allowed to warm to room temperature and the products were extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 80$ ml). The combined organic extracts were washed with 5% aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$ and brine (50 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography (silica gel, hexane- $50 \% \mathrm{Et}_{2} \mathrm{O}$) of the residue gave the title compound (2.62 $\mathrm{g}, 89 \%$) as a colourless viscous oil [together with recovered starting acid (30) ($130 \mathrm{mg}, 4.5 \%$)]; $[\alpha]_{\mathrm{D}}+87.5^{\circ}$ (c 0.40 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$. (film) $2985,2960,1780,1700,1610,1480$, $1390,1180,1100,1050$, and $1010 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.94(1 \mathrm{H}, \mathrm{d}, J 3.1$ $\mathrm{Hz}, 5-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 3-\mathrm{H}), 5.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.43$ (1 $\mathrm{H}, \mathrm{d}, J 5.2 \mathrm{~Hz}, 21-\mathrm{H}), 4.39\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.26-4.17(2 \mathrm{H}, \mathrm{m}$, $\left.5^{\prime}-\mathrm{H}\right), 3.79$ ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}$), 3.27 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}$), 3.16 ($3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{OMe}), 2.97(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 8.6 \mathrm{~Hz}, 18-\mathrm{H}), 2.40-2.30\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ H), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $1.86-1.73$ ($2 \mathrm{H}, \mathrm{m}$, $19-\mathrm{H}$ and $20-\mathrm{H}), 1.57-1.48(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 0.95(3 \mathrm{H}, \mathrm{d}, J 6.7$ $\mathrm{Hz}, 20-\mathrm{Me}), 0.90(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{Me})$, and $0.85(3 \mathrm{H}, \mathrm{d}, J 6.9$ $\mathrm{Hz}, \mathrm{Me}) ; \delta_{\mathrm{C}} 173.21,155.15,153.97,148.32,135.85,131.27,129.34$, $128.38,114.23,112.25,106.02,105.79,80.93,63.32,59.59,58.43$, $57.40,55.66,38.63,33.40,28.45,27.96,17.98,14.71,14.50,12.81$, and $12.54 ; m / z$ (e.i.) $486\left(M^{+}, 23 \%\right.$), 274 (44), 149 (12), and 83 (100) [Found (c.i.-h.r.m.s.): $m / z 485.2629 . \mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}\left(M^{+}-\right.$ H) requires $m / z, 485.2652]$.
α-Hydroxyacyl Oxazolidinone (33).-To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ and stirred solution of $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)$ (1 m in THF; 36.4 ml) in anhydrous THF (200 ml) was added dropwise a solution of the acyl oxazolidinone (31) ($13.59 \mathrm{~g}, 27.96 \mathrm{mmol}$) in anhydrous THF (80 ml) over 20 min under nitrogen. After being stirred at this temperature for 25 min , a precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of 2-benzenesulphonyl-3-phenyl-oxaziridine ${ }^{18 d} \quad(13.14 \mathrm{~g}, \quad 50.33$ mmol) in anhydrous THF (50 ml) was added via cannula over 7 \min and stirring was continued for a further 20 min . The excess of oxidizing agent was destroyed by reaction with dry $\mathrm{Et}_{3} \mathrm{~N}$ $(11.7 \mathrm{ml}, 83.9 \mathrm{mmol})$ for 20 min at $-78^{\circ} \mathrm{C}$ and the reaction was quenched with $\mathrm{AcOH}(16 \mathrm{ml}, 280 \mathrm{mmol})$ and allowed to warm to room temperature. Water (100 ml) was added and the two phase system was vigorously stirred for 15 min before it was diluted with $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$. The organic phase was decanted off, washed with water $(1 \times 100 \mathrm{ml}), 5 \%$ aqueous NaHCO_{3} $(2 \times 60 \mathrm{ml})$, and brine $(1 \times 70 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography of the remaining residue (silica gel, $1 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}-5 \% \mathrm{Et}_{2} \mathrm{O}$ and $1 \times$ hexane- $55 \% \mathrm{Et}_{2} \mathrm{O}$) gave the title compound ($11.6 \mathrm{~g}, 83 \%$) as a white solid which crystallized from $\mathrm{Et}_{2} \mathrm{O}$-hexane, m.p. $131.5-132{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+81^{\circ}$ (c 0.40 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }} .\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3600-3400,1970,1940$, $1785,1695,1610,1480,1450,1430,1390,1210,1100,1050$, 1020 , and $1010 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.93(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 5-\mathrm{H}), 6.63(1 \mathrm{H}$,
d, J3.1 Hz, 3-H), $5.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 5.07(1 \mathrm{H}$, br t, $18-\mathrm{H}), 4.73(1$ $\mathrm{H}, \mathrm{d}, J 5.8 \mathrm{~Hz}, 21-\mathrm{H}), 4.40-4.26\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 3.79(3$ $\mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.30(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{OH}), 3.26(3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe})$, 3.17 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), 2.43 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}$), 2.24-2.10 ($1 \mathrm{H}, \mathrm{m}$, $20-\mathrm{H}$), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 1.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $1.69-1.48$ (2 H , $\mathrm{m}, 19-\mathrm{H}), 1.03(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}), 0.93(3 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}$, $\mathrm{Me})$, and $0.88(3 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, \mathrm{Me})$; $\delta_{\mathrm{c}} 175.10,155.19,153.69$, $148.43,135.70,131.31,129.26,128.42,114.13,112.34,106.02$, $105.83,81.71,69.04,64.07,59.65,58.94,57.31,55.66,37.59,35.74$, $28.23,17.94,14.53,13.96,12.80$, and $12.57 ; m / z$ (e.i.) $502\left(M^{+}\right.$, 92%), 375 (19), 274 (100), and 244 (22) (Found: $m / z 502.2700$; C, $64.45 ; \mathrm{H}, 7.61 ; \mathrm{N}, 5.55 \% . \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $m / z, 502.2679$; C, 64.52; H, 7.62; N, 5.57\%).

Methyl α-Hydroxy Ester (34).-To a cooled $\left(-10^{\circ} \mathrm{C}\right)$ and stirred solution of the hydroxyacyl oxazolidinone (33) $(12.13 \mathrm{~g}$, 24.15 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{ml})$ was added dropwise, under nitrogen, a solution of MeOMgCl (prepared from 17.7 ml of 3 M MeMgCl in THF and 73 ml of anhydrous MeOH) over 10 min . After being stirred for 1 h at $-10^{\circ} \mathrm{C}$, the reaction was quenched with 10% aqueous $\mathrm{NaH}_{2} \mathrm{PO}_{4}(160 \mathrm{ml})$ and the products were extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{ml})$. The combined organic extracts were washed once with brine (100 ml), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-12 \% \mathrm{EtOAc}$) of the residue afforded the methyl ester (34) $(8.38 \mathrm{~g}, 86 \%)$ as a colourless viscous oil; $[\alpha]_{\mathrm{D}}+58.9^{\circ}(c 0.54$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$. film) $3600-3300,2940,2830,1740,1610$, $1590,1480,1450,1430,1400,1345,1255,1230,1200,1180$, 1100,1050 , and $1010 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.93(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 5-\mathrm{H}), 6.64$ $(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.42(1 \mathrm{H}, \mathrm{d}, J 5.8 \mathrm{~Hz}$, $21-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.75(3 \mathrm{H}, \mathrm{s}$, COOMe), 3.27 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}$), 3.16 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), 2.67 (1 H , $\mathrm{d}, J 5.8 \mathrm{~Hz}, \mathrm{OH}), 2.16-2.05(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.07(3 \mathrm{H}, \mathrm{s}$, ArMe), $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 1.72-1.54(2 \mathrm{H}, \mathrm{m}, 19-\mathrm{H})$, and $1.00(3 \mathrm{H}, \mathrm{d}, J$ $6.8 \mathrm{~Hz}, 20-\mathrm{Me}) ; \delta_{\mathrm{C}} 176.07$ (s), 155.25 (s), 148.40 (s), 135.40 (s), 131.34 (s), 129.36 (s), 128.33 (s), 114.20 (d), 112.26 (d), 106.09 (d), 105.87 (d), 81.57 (d), 68.77 (d), 59.63 (q), 57.34 (q), 55.65 (q), 52.42 (q), 37.91 (t), 35.61 (d), $14.15(\mathrm{q}), 12.83$ (q), and 12.44 (q); m / z (e.i.) $405\left(M^{+}, 59 \%\right), 274$ (100), and 244 (12) (Found: m / z 405.2159. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{6}$ requires $m / z, 405.2151$).

Silylated α-Hydroxy Ester (36).-Reaction of the hydroxy ester (34) ($17.40 \mathrm{~g}, 42.94 \mathrm{mmol}$) with TBDMS-OTf ($17.0 \mathrm{~g}, 64.4$ mmol) and 2,6-lutidine ($12 \mathrm{ml}, 107.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, using the same conditions described for the hydroxy ester (13a), gave the title compound ($21.65 \mathrm{~g}, 97 \%$) as a colourless viscous oil after flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-2 \% \mathrm{EtOAc}\right) ;[\alpha]_{\mathrm{D}}+34.0^{\circ}$ (c 0.60 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $2950,2930,2860,1760,1740,1610,1590,1520$, $1480,1450,1430,1400,1345,1250,1230,1200,1175,1145$, $1110,1050,1010,840,780$, and $760 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.87(1 \mathrm{H}, \mathrm{d}, J 3.2$ $\mathrm{Hz}, 5-\mathrm{H}), 6.59(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.86(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.31(1$ $\mathrm{H}, \mathrm{d}, J 5.6 \mathrm{~Hz}, 21-\mathrm{H}), 4.19$ ($1 \mathrm{H}, \mathrm{dd}, J 9.8, J^{\prime} 3.4 \mathrm{~Hz}, 18-\mathrm{H}$), 3.74 (3 $\mathrm{H}, \mathrm{s}, 4-\mathrm{OMe})$, 3.64 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}$), 3.23 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}$), 3.10 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), $2.10-2.00(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe})$, 1.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $1.71-1.54$ ($2 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}$), 0.88 ($3 \mathrm{H}, \mathrm{d}, J 6.8$ $\mathrm{Hz}, 20-\mathrm{Me}), 0.84\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{C}} \mathrm{BuSi}\right), 0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and 0.01 (3 $\mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; ~ m / z$ (e.i.) $519\left(M^{+}, 28 \%\right.$), 430 (26), 398 (11), 356 (13), 274 (43), 244 (17), 202 (26), 147 (35), and 89 (100) (Found: m / z, 519.3013. $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{NO}_{6} \mathrm{Si}$ requires $m / z, 519.3016$).

Aldehyde (37).-Reduction of the ester (36) ($10.7 \mathrm{~g}, 20.56$ mmol) with DIBAL-H (1 m in toluene; 32.9 ml) in toluene at $-80^{\circ} \mathrm{C}$, using the conditions described for the aldehyde (14), gave the crude aldehyde (37) (10.1 g) as a pale yellow viscous oil which was used in the next step without further purification after being azeotropically dried with toluene ($2 \times 200 \mathrm{ml}$). A sample purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $2.5 \% \mathrm{Et}_{2} \mathrm{O}$) showed: $[\alpha]_{\mathrm{D}}+34.3^{\circ}\left(c 0.70\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max. }}$. film $)$

2 950, 2 930, $2860,1740,1610,1590,1480,1450,1430,1400$, $1345,1255,1230,1200,1180,1100,1050,1010,840,780$, and $760 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 9.48(1 \mathrm{H}, \mathrm{d}, J 1.7 \mathrm{~Hz}, 17-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 5-$ H), $5.58(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.85(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.31(1 \mathrm{H}, \mathrm{d}, J$ $5.5 \mathrm{~Hz}, 21-\mathrm{H}), 3.98\left(1 \mathrm{H}\right.$, ddd, $\left.J 9.7, J^{\prime} 3.7, J^{\prime \prime} 1.7 \mathrm{~Hz}, 18-\mathrm{H}\right), 3.72$ ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}$), 3.22 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}$), 3.09 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), $2.05-1.98(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.02$ ($3 \mathrm{H}, \mathrm{s}$, ArMe), 1.93 ($3 \mathrm{H}, \mathrm{s}$, ArMe), $1.60-1.42(2 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me})$, $0.83\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{BuSi}\right), 0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and $0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$; m / z (e.i.) $489\left(M^{+}, 42 \%\right), 428(15), 400(60), 274$ (59), 244 (15), 191 (19), 149 (70), and 91 (100) (Found: $m / z, 489.2891$. $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{NO}_{5} \mathrm{Si}$ requires $m / z 489.2910$).

Preparation of (E)-Olefin (38).-To a stirred suspension of anhydrous $\mathrm{CrCl}_{2}(20.2 \mathrm{~g}, 164.5 \mathrm{mmol})$ in anhydrous THF (400 ml) was added dropwise, under nitrogen, a solution of the crude aldehyde (37) (10.1 g, 20.6 mmol$)$ and 1,1-di-iodoethane (11.6 g , 41.12 mmol) in anhydrous THF (75 ml) over 15 min . After being vigorously stirred at room temperature for 5 h , water (400 ml) was added and the organic phase was decanted off. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{ml})$ and the combined organic phases were washed once with brine $(100 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography (silica gel, hexane $-7 \% \mathrm{Et}_{2} \mathrm{O}$) of the remaining residue gave the (E)-olefin (38) $(9.37 \mathrm{~g}, 91 \%)$ as a colourless viscous oil; $[\alpha]_{\mathrm{D}}+43.5^{\circ}(c 0.46$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $2930,2860,1610,1590,1520,1480$, $1450,1430,1400,1345,1255,1230,1200,1180,1090,1055$, $1010,970,840,775$, and $760 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.92(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 5-\mathrm{H})$, 6.62 (1 H, d, J 3.2 Hz, 3-H), 5.90 ($2 \mathrm{H}, \mathrm{s}$, ArH), $5.51(1 \mathrm{H}, \mathrm{dq}, J$ $\left.15.2, J^{\prime} 6.4 \mathrm{~Hz}, 16-\mathrm{H}\right), 5.34\left(1 \mathrm{H}, \mathrm{dd}, J 15.2, J^{\prime} 7.0 \mathrm{~Hz}, 17-\mathrm{H}\right), 4.34$ $(1 \mathrm{H}, \mathrm{d}, J 5.6 \mathrm{~Hz}, 21-\mathrm{H}), 4.13-4.05(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, 4-$ OMe), $3.26(3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}), 3.14(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 2.07(3 \mathrm{H}, \mathrm{s}$, ArMe), $2.00(3 \mathrm{H}, \mathrm{s}$, ArMe $), 2.06-1.94(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.62(3 \mathrm{H}$, d, $J 6.4 \mathrm{~Hz}, 16-\mathrm{Me}), 1.58-1.49(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.29-1.21(1 \mathrm{H}$, $\mathrm{m}, 19-\mathrm{H}), 0.89(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}), 0.84\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{BuSi}\right)$, and $0.03(6 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; m / z$ (e.i.) $501\left(M^{+}, 38 \%\right), 357(25), 338(29)$, 274 (100), 244 (21), 185 (19), and 159 (23) (Found: $m / z 501.3268$. $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{Si}$ requires $m / z, 501.3274$).

Allylic Alcohol (39).-To a solution of the TBDMS-protected alcohol (38) ($9.25 \mathrm{~g}, 18.45 \mathrm{mmol}$) in anhydrous THF (170 ml) was added TBAF (1 m in THF; 36.9 ml) and the resulting pale green solution was stirred at room temperature for 16 h under nitrogen. Ether (500 ml) was added and the organic solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 140 \mathrm{ml})$ and brine $(1 \times 140 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography (silica gel, hexane-55\% Et ${ }_{2} \mathrm{O}$) of the residue gave the title compound $(6.94 \mathrm{~g}, 97 \%)$ as a colourless viscous oil; $[\alpha]_{\mathrm{D}}+56.8^{\circ}\left(c 0.44\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max. }}($ film $) 3650-$ 3 200, 2 930, $2830,1610,1590,1520,1480,1450,1430,1400$, $1380,1345,1230,1200,1180,1100,1050,1010,970,865$, and $760 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.95(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 5-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-$ H), 5.91 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 5.64 ($\left.1 \mathrm{H}, \mathrm{dq}, J 15.3, J^{\prime} 6.3 \mathrm{~Hz}, 16-\mathrm{H}\right), 5.45$ ($\left.1 \mathrm{H}, \mathrm{ddq}, J 15.3 J^{\prime} 6.7, J^{\prime \prime} 1.4 \mathrm{~Hz}, 17-\mathrm{H}\right), 4.43(1 \mathrm{H}, \mathrm{d}, J 5.5 \mathrm{~Hz}$, $21-\mathrm{H}), 4.11(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.28(3 \mathrm{H}, \mathrm{s}$, $21-\mathrm{OMe}), 3.16(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.01(3 \mathrm{H}, \mathrm{s}$, ArMe), $2.05-1.94(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.70(1 \mathrm{H}, \mathrm{d}, J 4.1 \mathrm{~Hz}, \mathrm{OH})$, 1.67 (3 H , dd, $J 6.3, J^{\prime} 1.4 \mathrm{~Hz}, 16-\mathrm{Me}$), $1.59\left(1 \mathrm{H}, \mathrm{ddd}, J 14.1, J^{\prime}\right.$ $\left.9.1, J^{\prime \prime} 5.2 \mathrm{~Hz}, 19-\mathrm{H}\right), 1.34\left(1 \mathrm{H}\right.$, ddd, $J 14.1, J^{\prime} 8.5, J^{\prime \prime} 4.4 \mathrm{~Hz}, 19-$ $\mathrm{H})$, and $0.95(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}) ; \delta_{\mathrm{c}} 155.13(\mathrm{~s}), 148.34(\mathrm{~s})$, 135.59 (s), 134.71 (s), 131.27 (s), 129.41 (s), 128.31 (s), 126.11 (d), 114.07 (d), 112.43 (d), 106.04 (d), 105.79 (d), 81.47 (d), 70.81 (d), 59.60 (q), 57.37 (q), 55.65 (q), 40.86 (t), 35.82 (d), 17.68 (q), 15.09 (q), $12.89(\mathrm{q})$, and $12.56(\mathrm{q}) ; m / z$ (e.i.) $387\left(M^{+}, 47 \%\right), 274(100)$, 244 (18), and 142 (89) (Found: m / z 387.2404. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{4}$ requires $m / z 387.2409$).

Epoxy Alcohol (40).-To a cooled $\left(-20^{\circ} \mathrm{C}\right)$ and stirred
solution of (L)-(+)-DIPT ($4.97 \mathrm{~g}, 21.23 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{ml})$ was added $\mathrm{Ti}\left(\mathrm{O}^{\mathrm{i} P r}\right)_{4}(5.26 \mathrm{ml}, 17.69 \mathrm{mmol})$ followed by the allylic alcohol (39) $(6.58 \mathrm{~g}, 17.69 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25$ ml) at such a rate as to keep the temperature below $-19^{\circ} \mathrm{C}$. After being stirred for 30 min at this temperature under argon, TBHP (3 M in iso-octane; $11.8 \mathrm{ml}, 35.38 \mathrm{mmol}$) was added dropwise over 5 min and stirring was continued at $-20^{\circ} \mathrm{C}$ for 23 h . The mixture was allowed to warm to $0^{\circ} \mathrm{C}$, then water (100 $\mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ were added and the two-phase system was vigorously stirred at 0 to $25^{\circ} \mathrm{C}$ for $55 \mathrm{~min} .30 \%$ Aqueous $\mathrm{NaOH}(20 \mathrm{ml})$ and brine $(2 \mathrm{ml})$ were added and stirring was resumed for a further 55 min . Water $(120 \mathrm{ml})$ was added and the products were extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 250 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography (silica gel, hexane $-60 \% \mathrm{Et}_{2} \mathrm{O}$) of the residue gave a $95: 5$ mixture (7.10 g , 99.6%) of the required epoxide (40) and its corresponding isomer, respectively. This mixture could be purified by column chromatography on alumina $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-10 \% \mathrm{EtOAc}\right)$ to give pure (40) as a colourless viscous oil; $[\alpha]_{\mathrm{D}}+66.4^{\circ}(c 0.60$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $3600-3200,2970,2930,2830,1610$, $1590,1520,1480,1450,1430,1400,1380,1345,1230,1200$, $1180,1100,1050$, and $1010 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.97(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}$, $5-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.91(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.46(1 \mathrm{H}, \mathrm{d}$, $J 5.6 \mathrm{~Hz}, 21-\mathrm{H}), 3.85-3.79(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe})$, $3.28(3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}), 3.17(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 3.03(1 \mathrm{H}, \mathrm{dq}, J 5.3$, $\left.J^{\prime} 2.3 \mathrm{~Hz}, 16-\mathrm{H}\right), 2.69\left(1 \mathrm{H}\right.$, dd, $\left.J 3.4, J^{\prime} 2.3 \mathrm{~Hz}, 17-\mathrm{H}\right), 2.14-2.02$ ($1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 2.08$ ($3 \mathrm{H}, \mathrm{s}$, ArMe), 2.01 ($3 \mathrm{H}, \mathrm{s}$, ArMe), 1.55$1.40(2 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.30(3 \mathrm{H}, \mathrm{d}, J 5.3 \mathrm{~Hz}, 16-\mathrm{Me})$, and $0.97(3 \mathrm{H}$, $\mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}) ; \delta_{\mathrm{C}} 155.16$ (s), 148.36 (s), $135.30(\mathrm{~s}), 131.26(\mathrm{~s})$, 129.31 (s), 128.22 (s), 114.12 (d), 112.40 (d), 106.07 (d), 105.81 (d), 81.60 (d), 66.90 (d), 62.19 (d), 59.60 (q), 57.32 (q), 55.63 (q), 51.10 (d), $36.50(\mathrm{t}), 35.83(\mathrm{~d}), 17.25(\mathrm{q}), 14.82(\mathrm{q}), 12.87(\mathrm{q})$, and 12.54 (q); m / z (e.i.) $403\left(M^{+}, 34 \%\right), 274$ (100), 244 (11), and 149 (13) (Found: $m / z 403.2363 . \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{5}$ requires $m / z, 403.2359$).

Epoxide (3).-To a cooled $\left(-15^{\circ} \mathrm{C}\right)$ solution of the epoxy alcohol (40) (containing 5% of other isomer; $14.46 \mathrm{~g}, 35.86$ mmol) and MeI ($11.2 \mathrm{ml}, 180 \mathrm{mmol}$) in anhydrous THF (180 ml) was added portionwise, under nitrogen, $\mathrm{NaH}(80 \%$ dispersion in oil; $1.40 \mathrm{~g}, 46.6 \mathrm{mmol}$) and the mixture was stirred at $-15^{\circ} \mathrm{C}$ for 15 min and at $0^{\circ} \mathrm{C}$ for 3 h . Water $(100 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$ were added, the organic phase was decanted off and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{ml})$. The combined organic phases were washed once with brine (100 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography of the residue on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-5 \% \mathrm{EtOAc}\right)$ afforded the diastereoisomerically pure epoxy ether (3) ($13.18 \mathrm{~g}, 88 \%$) as a colourless oil which solidified on standing; $[\alpha]_{\mathrm{D}}+48.2^{\circ}(c 0.56$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $2970,2930,2820,1610,1590,1520$, $1480,1450,1430,1400,1380,1345,1230,1200,1175,1100$, $1050,1010,955,870$, and $760 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.94(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}$, $5-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 3-\mathrm{H}), 5.90(2 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 4.39(1 \mathrm{H}, \mathrm{d}$, $J 5.9 \mathrm{~Hz}, 21-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.34(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{OMe}), 3.26$ ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}$), 3.16 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), $3.06\left(1 \mathrm{H}, \mathrm{ddd}, J 9.9, J^{\prime}\right.$ $\left.5.8, J^{\prime \prime} 3.1 \mathrm{~Hz}, 18-\mathrm{H}\right), 2.97\left(1 \mathrm{H}, \mathrm{dq}, J 5.2, J^{\prime} 2.1 \mathrm{~Hz}, 16-\mathrm{H}\right), 2.51$ (1 $\left.\mathrm{H}, \mathrm{dd}, J 5.8, J^{\prime} 2.1 \mathrm{~Hz}, 17-\mathrm{H}\right), 2.07$ ($3 \mathrm{H}, \mathrm{s}$, ArMe), 2.02 ($3 \mathrm{H}, \mathrm{s}$, ArMe $), 2.10-1.98(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.56\left(1 \mathrm{H}\right.$, ddd, $J 14.0, J^{\prime} 9.9$, $\left.J^{\prime \prime} 4.2 \mathrm{~Hz}, 19-\mathrm{H}\right), 1.43\left(1 \mathrm{H}\right.$, ddd, $\left.J 14.0, J^{\prime} 9.9, J^{\prime \prime} 3.1 \mathrm{~Hz}, 19-\mathrm{H}\right)$, $1.30(3 \mathrm{H}, \mathrm{d}, J 5.2 \mathrm{~Hz}, 16-\mathrm{Me})$, and $0.93(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 20-\mathrm{Me})$; $\delta_{\mathrm{C}} 155.15$ (s), 148.42 (s), 135.73 (s), 131.21 (s), 129.33 (s), 128.38 (s), 114.06 (d), 112.34 (d), 106.00 (d), 105.80 (d), 81.77 (d), 78.34 (d), 60.71 (d), 59.59 (q), 57.89 (q), 57.34 (q), 55.64 (q), 53.47 (d), $35.78(\mathrm{t}), 35.31(\mathrm{~d}), 17.33(\mathrm{q}), 14.61(\mathrm{q}), 12.85(\mathrm{q})$, and $12.61(\mathrm{q}) ;$ m / z (e.i.) $417\left(M^{+}, 58 \%\right), 274$ (100), and 244 (15) (Found: m / z 417.2514; $\mathrm{C}, 69.02 ; \mathrm{H}, 8.49 ; \mathrm{N}, 3.40 . \mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{5}$ requires m / z, 417.2515; C, 69.04; H, 8.45; N, 3.35%).

Preparation of Alcohol (45) by Reduction of Ester (13a).-To
a cooled $\left(-60^{\circ} \mathrm{C}\right)$ and stirred solution of the ester (13a) $(22.1 \mathrm{~g}$, 55.5 mmol) in anhydrous toluene (400 ml) was added dropwise, under nitrogen, DIBAL-H (1 m in toluene; 128 ml) over 40 min . The resulting colourless solution was allowed to warm to $-20^{\circ} \mathrm{C}$ and was stirred for 1 h before it was quenched with $\mathrm{MeOH}(40 \mathrm{ml})$. Citric acid (10% aqueous solution; 500 ml) was added, the organic phase was decanted off and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 400 \mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed under vacuum and the residue purified by flash chromatography (silica gel, hexane- $25 \% \mathrm{Et}_{2} \mathrm{O}$) to give the alcohol (45) (20.1 g , 98%) as a colourless liquid; $[\alpha]_{\mathrm{D}}+44.5^{\circ}\left(c 0.60\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max. (film) }} 3650-3150,2960,2930,2890,2860,1615,1470$, $1460,1260,1140,1110,1080,1030,840$, and $780 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.18$ ($1 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}$), $4.21(1 \mathrm{H}, \mathrm{d}, J 5.1 \mathrm{~Hz}, 13-\mathrm{H}), 3.58-3.42(2 \mathrm{H}, \mathrm{m}$, $11-\mathrm{H}), 1.90-1.76(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.78(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}), 1.61(1 \mathrm{H}$, br s, OH), $0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{\text {' }} \mathrm{BuSi}\right), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 12-\mathrm{Me}), 0.06$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$), and -0.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$); $\delta_{\mathrm{c}} 148.95$ (s), 78.20 (d), 77.98 (d), 65.24 (t), 39.63 (d), 25.79 (q), 21.08 (q), 18.18 (s$), 11.58$ (q), $-4.79(\mathrm{q})$, and $-5.32(\mathrm{q}) ; m / z$ (e.i.) $313\left(M^{+}-57,58 \%\right.$), 271 (79), 186 (58), and 75 (100); m / z (c.i.) $371\left(M^{+}+1,18 \%\right.$), 313 (51), 271 (39), 239 (24), 186 (55), 111 (100), and 92 (64) [Found: m / z (c.i.-h.r.m.s.), 313.0108. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{IO}_{2} \mathrm{Si}\left(M^{+}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{9}$) requires m / z 313.0121].

Bis-silylated Diol (46).-To a solution of the alcohol (45) $(27.38 \mathrm{~g}, 73.98 \mathrm{mmol})$ and imidazole ($15.11 \mathrm{~g}, 221.94 \mathrm{mmol}$) in anhydrous DMF (250 ml) was added TBDMSCl (16.73 g , 110.97 mmol) and the mixture was stirred at room temperature for 20 h under argon. Ether (650 ml) was added and the solution was washed with water (200 ml), $1 \mathrm{~m} \mathrm{HCl}(180 \mathrm{ml}), 5 \%$ aqueous $\mathrm{NaHCO}_{3}(180 \mathrm{ml})$, and brine (180 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography (silica gel, hexane) of the residue gave the title compound ($35.8 \mathrm{~g}, 100 \%$) as a colourless liquid; $[\alpha]_{\mathrm{D}}+26.1^{\circ}\left(c 0.44\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max. }}$. (film) 2960,2930 , 2900,2 860, $1615,1470,1460,1390,1360,1255,1140,1100$, $1070,1030,1005,940,880,835,810$, and $775 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.11(1 \mathrm{H}$, $\mathrm{t}, J 1.2 \mathrm{~Hz}, 15-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{d}, J 5.2 \mathrm{~Hz}, 13-\mathrm{H}), 3.43(1 \mathrm{H}, \mathrm{dd}, J$ $\left.10.0, J^{\prime} 5.4 \mathrm{~Hz}, 11-\mathrm{H}\right), 3.34\left(1 \mathrm{H}, \mathrm{dd}, J 10.0, J^{\prime} 5.4 \mathrm{~Hz}, 11-\mathrm{H}\right), 1.73$ $(3 \mathrm{H}, \mathrm{d}, J 1.2 \mathrm{~Hz}, 14-\mathrm{Me}), 1.75-1.66(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 0.88(18 \mathrm{H}$, $\left.\mathrm{s}, 2 \times{ }^{\mathrm{t}} \mathrm{BuSi}\right), 0.82(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 12-\mathrm{Me}), 0.02(9 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and 0.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$); $\delta_{\mathrm{c}} 149.23$ (s), 77.38 (d), 77.07 (d), 64.69 (t), 39.78 (d), 25.86 (q), 25.79 (q), 20.75 (q), 18.19 (s), 11.29 (q), -4.81 (q), -5.32 (q), -5.41 (q), and -5.46 (q); m / z (c.i.) 484 ($M^{+}, 5 \%$), 469 (3), 427 (22), 385 (13), 353 (100), 311 (26), 238 (72), 206 (32), 164 (31), 132 (22), and 90 (28) [Found: m / z (e.i.h.r.m.s.) $427.1000 . \mathrm{C}_{15} \mathrm{H}_{32} \mathrm{IO}_{2} \mathrm{Si}_{2}\left(M^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ requires m / z, 247.0986].

Coupling of the Epoxide (3) and the Vinyl Iodide (46): Preparation of the Alcohol (48).-To a cooled $\left(-77^{\circ} \mathrm{C}\right)$ and stirred solution of the vinyl iodide (46) ($780 \mathrm{mg}, 1.61 \mathrm{mmol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ was added dropwise, under argon, ${ }^{\mathrm{t}} \mathrm{BuLi}$ (1.43 M in pentane; $2.25 \mathrm{ml}, 3.22 \mathrm{mmol}$) over 5 min . After being stirred at $-80^{\circ} \mathrm{C}$ for 2 h , the newly formed vinyl lithium reagent was quickly cannulated into a cooled ($-70^{\circ} \mathrm{C}$) suspension of $\mathrm{CuCN}(72 \mathrm{mg}, 0.81 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{ml})$. The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and was stirred at this temperature for 2 min to give a pale yellow solution of the cuprate which was immediately recooled to $-75^{\circ} \mathrm{C}$. The epoxide (3) ($280 \mathrm{mg}, 0.67 \mathrm{mmol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ was added dropwise to the cuprate solution, followed by dry $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(165 \mu \mathrm{l}, 1.34 \mathrm{mmol})$ over 2 min , and stirring was continued for 1 h at $-80^{\circ} \mathrm{C}$ before the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{3}$ (c) $(9: 1,8 \mathrm{ml})$. After being stirred at room temperature for 25 min , the products were extracted into $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{ml})$ and the combined organic solutions were washed once with brine $(20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and
concentrated. Flash chromatography (silica gel, hexane- 20% $\mathrm{EtOAc})$ of the residue gave the coupled product ($\mathbf{4 8}$) $(435 \mathrm{mg}$, 84%) as a colourless thick gum together with the iodocompound (44) ($45 \mathrm{mg}, 12 \%$). Compound (48): $[\alpha]_{\mathrm{D}}+32.2^{\circ}$ (c 0.45 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $3600-3300,2960,2930,2860,1610$, $1590,1520,1480,1430,1400,1345,1250,1230,1200,1180$, $1100,1050,1010,840,810,775$, and $755 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.94(1 \mathrm{H}, \mathrm{d}, J$ $3.2 \mathrm{~Hz}, 5-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 5.11$ $(1 \mathrm{H}, \mathrm{d}, J 10.3 \mathrm{~Hz}, 15-\mathrm{H}), 4.36(1 \mathrm{H}, \mathrm{d}, J 5.8 \mathrm{~Hz}, 21-\mathrm{H}), 4.03(1 \mathrm{H}$, d, $J 4.4 \mathrm{~Hz}, 13-\mathrm{H}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}$), $3.62\left(1 \mathrm{H}, \mathrm{dd}, J 9.4, J^{\prime} 2.8\right.$ $\mathrm{Hz}, 17-\mathrm{H}), 3.47\left(1 \mathrm{H}, \mathrm{dd}, J 9.8, J^{\prime} 6.5 \mathrm{~Hz}, 11-\mathrm{H}\right), 3.33(1 \mathrm{H}, \mathrm{dd}, J$ $\left.9.8, J^{\prime} 7.1 \mathrm{~Hz}, 11-\mathrm{H}\right), 3.30\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{OMe}^{*}\right), 3.25(3 \mathrm{H}, \mathrm{s}$, $\left.21-\mathrm{OMe}^{*}\right)$, 3.16 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), $3.15-3.13(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H})$, 2.47-2.36(1 H, m, 16-H), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $2.06(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), $2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.06-1.96(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.70-1.54(2 \mathrm{H}$, $\mathrm{m}, 19-\mathrm{H}$ and $12-\mathrm{H}$), $1.54(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 14-\mathrm{Me}), 1.26-1.08(1 \mathrm{H}, \mathrm{m}$, $19-\mathrm{H}), 1.04(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, 16-\mathrm{Me}), 0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{\text {t }} \mathrm{BuSi}\right), 0.89(9$ $\left.\mathrm{H}, \mathrm{s},{ }^{\text {' }}{ }^{1} \mathrm{BuSi}\right), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 20-\mathrm{Me}), 0.79(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}$, $12-\mathrm{Me}), 0.03(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{MeSi}), 0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and -0.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$); $\delta_{\mathrm{C}} 155.14$ (s), 148.44 (s), 136.57 (s), 135.81 (s), 131.23 (s), 129.53 (s), 128.27 (s), 126.99 (d), 113.99 (d), 112.35 (d), 106.00 (d), 105.70 (d), 82.40 (d), 79.89 (d), 76.55 (d), 73.62 (d), 65.39 (t), $59.54(\mathrm{q}), 57.34(\mathrm{q}), 56.71(\mathrm{q}), 55.64$ (q), 40.31 (d), 35.23 (d), 34.41 (d), 30.46 (t), 25.96 (q), 25.92 (q), 18.25 (s), 27.88 (q), 14.63 (q), 13.14 (q), 12.88 (q), 12.62 (q), 11.15 (q), -4.26 (q), $-5.03(\mathrm{q}),-5.16(\mathrm{q})$, and $-5.23(\mathrm{q}) ; m / z$ (e.i.) $776\left(M^{+}, 74 \%\right)$, 470 (17), 358 (51), 330 (43), 274 (100), and 147 (51) (Found: m / z 775.5242. $\mathrm{C}_{43} \mathrm{H}_{77} \mathrm{NO}_{7} \mathrm{Si}_{2}$ requires $m / z, 775.5239$).

Methyl Ether (49).-To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of the hydroxy compound (48) $(15.24 \mathrm{~g}, 19.65 \mathrm{mmol})$ and dry MeI ($12.2 \mathrm{ml}, 197 \mathrm{mmol}$) in anhydrous THF (98 ml) was added NaH (80% dispersion in oil; $830 \mathrm{mg}, 27.6 \mathrm{mmol}$) in one portion under argon. After 10 min , the mixture was allowed to warm to room temperature and stirred for 6 h . Ether (300 ml) and water (80 ml) were added and the organic phase was decanted off. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{ml})$ and the combined organic phases were washed once with brine (80 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography (silica gel, hexane- $20 \% \mathrm{Et}_{2} \mathrm{O}$) of the remaining residue gave the methyl ether (49) ($14.85 \mathrm{~g}, 96 \%$) as a colourless viscous oil; $[\alpha]_{\mathrm{D}}$ $+42.7^{\circ}\left(c 0.60\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max. }}$ (film) 2 960, $2930,2860,2830$, $1610,1590,1480,1430,1400,1345,1250,1230,1200,1180$, $1100,1080,1055,1010,840,775$, and $760 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.95(1 \mathrm{H}, \mathrm{d}$, $J 3.2 \mathrm{~Hz}, 5-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.90(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH})$, $5.15(1 \mathrm{H}, \mathrm{d}, J 10.1 \mathrm{~Hz}, 15-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{d}, J 5.7 \mathrm{~Hz}, 21-\mathrm{H}), 3.98$ $(1 \mathrm{H}, \mathrm{d}, J 4.8 \mathrm{~Hz}, 13-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.47(1 \mathrm{H}, \mathrm{dd}, J 9.9$, $J^{\prime} 6.3 \mathrm{~Hz}, 11-\mathrm{H}$), 3.41 ($3 \mathrm{H}, \mathrm{s}, 17-\mathrm{OMe}$), 3.30 ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{OMe}^{*}$), $3.26\left(3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}^{*}\right), 3.31-3.18(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}$ and $18-\mathrm{H}), 3.16$ ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), 3.09 ($1 \mathrm{H}, \mathrm{dd}, J 8.4, J^{\prime} 2.4 \mathrm{~Hz}, 17-\mathrm{H}$), 2.52-2.40 ($1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}$), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $2.07-$ $1.96(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.74-1.54(2 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}$ and $12-\mathrm{H}), 1.53$ (3 $\mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, 14-\mathrm{Me}), 1.33-1.24(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 0.99(3 \mathrm{H}, \mathrm{d}, J$ $6.6 \mathrm{~Hz}, 16-\mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{\text {'BuSi}}\right), 0.88\left(9 \mathrm{H}, \mathrm{s},{ }^{\text {'BuSi}}\right), 0.86(3 \mathrm{H}$, $\mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}), 0.85(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 12-\mathrm{Me}), 0.03(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeSi}), 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.01(3 \mathrm{H}, \mathrm{s}$, MeSi), and -0.03 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeSi}) ; \delta_{\mathrm{C}} 155.07$ (s), 148.45 (s), 136.25 (s), 136.06 (s), 131.16 (s), 129.40 (s), 128.69 (d), 128.44 (s), 114.02 (d), 112.36 (d), 105.91 (d), 105.69 (d), 84.75 (d), 82.56 (d), 80.90 (d), 77.24 (d), 65.38 (t), 60.73 (q), 59.55 (q), 57.39 (q), 56.92 (q), 55.63 (q), 40.57 (d), 35.46 (d), 34.85 (d), 32.68 (t), 25.94 (q), 25.91 (q), 18.23 (s), 17.20 (q), 14.51 (q), 12.91 (q), 12.18 (q), 12.62 (q), 11.58 (q), $-4.25(\mathrm{q})$, $-5.05(\mathrm{q}),-5.20(\mathrm{q})$, and $-5.24(\mathrm{q}) ; m / z$ (e.i.) $790\left(M^{+}, 42 \%\right)$, 676 (17), 489 (27), 404 (44), 328 (81), and 274 (100) [Found: m / z (c.i.-h.r.m.s.), 788.5292. $\mathrm{C}_{44} \mathrm{H}_{78} \mathrm{NO}_{7} \mathrm{Si}_{2}\left(M^{+}-\mathrm{H}\right)$ requires m / z 788.5317].

Mono-silylated Diol (50)--To a solution of the bis-silylated
diol (49) (1.11 g, 1.40 mmol$)$ in anhydrous $\mathrm{MeOH}(16 \mathrm{ml})$ was added, under argon, HF.Py-Py-THF ($1: 3: 3,5.6 \mathrm{ml}$) and the resulting colourless solution was stirred at room temperature for 6.5 h . Solvents were removed under vacuum and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$, washed with $1 \mathrm{~m} \mathrm{HCl}(50 \mathrm{ml}), 5 \%$ aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$, and brine $(50 \mathrm{ml})$, then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. Flash chromatography (silica gel, hexane $-55 \% \mathrm{Et}_{2} \mathrm{O}$) of the residue afforded the title compound ($906 \mathrm{mg}, 96 \%$) as a colourless viscous oil; $[\alpha]_{\mathrm{D}}+43.7^{\circ}$ (c 0.60 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $3600-3300,2960,2930,2860,2830$, $1610,1590,1520,1480,1430,1400,1345,1250,1230,1200$, $1180,1100,1055,1010,870,840,775$, and $760 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.95(1$ $\mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 5-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.90(2 \mathrm{H}, \mathrm{s}$, ArH), $5.16(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, 15-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{d}, J 5.4 \mathrm{~Hz}, 21-\mathrm{H})$, $3.89(1 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 13-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.51(1 \mathrm{H}$, dd, $\left.J 10.8, J^{\prime} 6.6 \mathrm{~Hz}, 11-\mathrm{H}\right), 3.41(3 \mathrm{H}, \mathrm{s}, 17-\mathrm{OMe}), 3.39(1 \mathrm{H}, \mathrm{dd}, J$ $\left.10.8, J^{\prime} 5.2 \mathrm{~Hz}, 11-\mathrm{H}\right), 3.30\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{OMe}^{*}\right), 3.26(3 \mathrm{H}, \mathrm{s}$, $21-\mathrm{OMe}^{*}$), 3.29-3.23 (1 H, m, 18-H), $3.16(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 3.09$ (1 H, dd, $\left.J 8.0, J^{\prime} 2.5 \mathrm{~Hz}, 17-\mathrm{H}\right), 2.60-2.49(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 2.07$ (3 H, s, ArMe), 2.02 ($3 \mathrm{H}, \mathrm{s}$, ArMe), $2.06-1.96$ ($1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}$), $1.91-1.79(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 1.71-1.63(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.60(3 \mathrm{H}$, $\mathrm{d}, J 1.1 \mathrm{~Hz}, 14-\mathrm{Me}), 1.40-1.25(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.01(3 \mathrm{H}, \mathrm{d}, J 6.7$ $\mathrm{Hz}, 16-\mathrm{Me}), 0.95(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 12-\mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{BuSi}\right)$, $0.88(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 20-\mathrm{Me}), 0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and -0.01 (3 $\mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}} 154.94$ (s), 148.25 (s), 136.20 (s), 135.97 (s), 131.16 (s), 129.79 (d), 129.32 (s), 128.33 (s), 113.98 (d), 112.33 (d), 105.94 (d), 105.70 (d), 85.13 (d), 82.36 (d), 80.86 (d), 80.64 (d), 65.64 (t), 60.33 (q), 59.56 (q), 57.37 (q), 56.90 (q), 55.62 (q), 40.19 (d), 35.56 (d), 34.68 (d), 33.05 (t), 25.85 (q), 18.14 (s), 17.04 (q), 14.30 (q), $13.18(\mathrm{q}), 12.81(\mathrm{q}), 12.58(\mathrm{q}), 12.43(\mathrm{q}),-4.36(\mathrm{q})$, and -5.10 (q); m / z (e.i.) $676\left(M^{+}, 71 \%\right), 404$ (31), $340(58)$, and 274 (46) [Found: m / z (c.i.-h.r.m.s.) 674.4448. $\mathrm{C}_{38} \mathrm{H}_{64} \mathrm{NO}_{7} \mathrm{Si}\left(M^{+}-\mathrm{H}\right)$ requires $m / z 674.4452$].

Aldehyde (51).-Oxidation of the alcohol (50) (2.53 g, 3.74 $\mathrm{mmol})$ with $\mathrm{SO}_{3} \cdot \operatorname{Py}(7.16 \mathrm{~g}, 45 \mathrm{mmol})$ in DMSO-THF $(6: 1 ; 30$ $\mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{ml}, 72 \mathrm{mmol})$, using the conditions described for the aldehyde (27), produced the aldehyde (51) (2.24 g, 89\%) as a colourless viscous oil after flash chromatography on silica gel (hexane- 15% EtOAc); $[\alpha]_{\mathrm{D}}+43.4^{\circ}\left(c 0.50\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}$ (film) $2960,2930,2860,2820,1725,1075,1610,1590$, $1520,1480,1450,1425,1395,1340,1250,1225,1200,1185$, $1100,1050,1005,840,775$, and $755 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 9.67(1 \mathrm{H}, \mathrm{d}, J 1.8$ $\mathrm{Hz}, 11-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 5-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}$, $3-\mathrm{H}), 5.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 5.23(1 \mathrm{H}, \mathrm{d}, J 10.1 \mathrm{~Hz}, 15-\mathrm{H}), 4.37(1 \mathrm{H}$, $\mathrm{d}, J 5.6 \mathrm{~Hz}, 21-\mathrm{H}), 4.26(1 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, 13-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}$, 4-OMe), 3.40 ($3 \mathrm{H}, \mathrm{s}, 17-\mathrm{OMe}$), 3.29 ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{OMe}^{*}$), 3.26 (3 $\mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}^{*}$), 3.16 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), $3.16-3.11$ ($1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}$), $3.06\left(1 \mathrm{H}, \mathrm{dd}, J 8.3, J^{\prime} 2.5 \mathrm{~Hz}, 17-\mathrm{H}\right), 2.54\left(1 \mathrm{H}\right.$, dqn, $J 6.7, J^{\prime} 1.8$ $\mathrm{Hz}, 12-\mathrm{H}), 2.50-2.40(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 2.07(3 \mathrm{H}, \mathrm{s}$, ArMe), 2.02 (3 $\mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.04-1.94(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.67-1.57(1 \mathrm{H}, \mathrm{m}, 19-$ H), $1.57(3 \mathrm{H}, \mathrm{d}, J 1.1 \mathrm{~Hz}, 14-\mathrm{Me}), 1.30-1.24(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.04$ $(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 12-\mathrm{Me}), 1.01(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 16-\mathrm{Me}), 0.88(9$ $\left.\mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{BuSi}\right), 0.85(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 20-\mathrm{Me}), 0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and $0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}} 203.97$ (d), 155.08 (s), 148.42 (s), 136.04 (s), 134.60 (s), 131.18 (s), 130.86 (d), 129.41 (s), 128.43 (s), 114.02 (d), 112.33 (d), 105.92 (d), 105.69 (d), 84.65 (d), 82.51 (d), 80.69 (d), 77.92 (d), 60.73 (q), 59.57 (q), 57.39 (q), 56.94 (q), 55.64 (q), 51.17 (d), 35.46 (d), 34.82 (d), 32.73 (t), 25.79 (q), 18.14 (s), 16.94 (q), 14.39 (q), 12.82 (q), 12.63 (q), 12.47 (q), 9.47 (q), -4.28 (q), and -5.05 (q); m / z (e.i.) $674\left(M^{+}, 2 \%\right.$), 541 (13), 328 (13), 274 (25), 181 (29), and 125 (100) (Found: m / z (c.i.-h.r.m.s.) 672.4269. $\mathrm{C}_{38} \mathrm{H}_{62} \mathrm{NO}_{7} \mathrm{Si}\left(M^{+}-\mathrm{H}\right)$ requires $m / z 672.4295$].
(Z)- α, β-Unsaturated Ester (52).-The title compound (a colourless viscous oil) was prepared in 99% isolated yield (after flash chromatography on silica gel, hexane- 15% EtOAc) from aldehyde (51) following the methodology described for the
unsaturated ester (15); $[\alpha]_{\mathrm{D}}+95.5^{\circ}$ (c 0.40 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\max .}$ (film) $2960,2930,2860,2830,1725,1645,1610,1590$, $1520,1480,1400,1340,1255,1230,1200,1180,1100,1010$, $960,875,840,775$, and $755 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.94(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 5-\mathrm{H})$, $6.62(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.98\left(1 \mathrm{H}, \mathrm{dd}, J 11.6, J^{\prime} 10.2 \mathrm{~Hz}\right.$, $11-\mathrm{H}), 5.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 5.65\left(1 \mathrm{H}, \mathrm{dd}, J 11.6, J^{\prime} 0.7 \mathrm{~Hz}, 10-\mathrm{H}\right)$, $5.16(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, 15-\mathrm{H}), 4.36(1 \mathrm{H}, \mathrm{d}, J 5.9 \mathrm{~Hz}, 21-\mathrm{H}), 3.79$ ($1 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, 13-\mathrm{H}$), $3.78(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.72-3.65(1 \mathrm{H}, \mathrm{m}$, $12-\mathrm{H}), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 3.38(3 \mathrm{H}, \mathrm{s}, 17-\mathrm{OMe}), 3.29(3 \mathrm{H}, \mathrm{s}$, $18-\mathrm{OMe}^{*}$), 3.25 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}^{*}$), $3.19-3.15(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H})$, $3.16(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 3.05\left(1 \mathrm{H}, \mathrm{dd}, J 8.3, J^{\prime} 2.5 \mathrm{~Hz}, 17-\mathrm{H}\right), 2.48-$ $2.36(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 2.07(3 \mathrm{H}, \mathrm{s}$, ArMe), 2.02 ($3 \mathrm{H}, \mathrm{s}$, ArMe), $2.04-1.92(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.64-1.56(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.55(3 \mathrm{H}$, $\mathrm{d}, J 1.1 \mathrm{~Hz}, 14-\mathrm{Me}), 1.30-1.22(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.6$ $\mathrm{Hz}, 12-\mathrm{Me}), 0.98(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 16-\mathrm{Me}), 0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{BuSi}\right)$, $0.83(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 20-\mathrm{Me}), 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and $-0.03(3$ H, s, MeSi); $\delta_{\mathrm{C}} 166.40$ (s), 155.09 (s), 153.14 (d), 148.49 (s), 136.47 (s), 136.14 (s), 131.17 (s), 129.93 (d), 129.40 (s), 128.43 (s), 118.17 (d), 114.09 (d), 112.28 (d), 105.92 (d), 105.59 (d), 84.84 (d), 82.57 (d), 82.01 (d), 80.78 (d), 60.62 (q), 59.54 (q), 57.36 (q), 56.81 (q), 55.64 (q), 50.95 (q), 37.32 (d), 35.56 (d), 34.65 (d), 32.78 (t), 25.86 (q), 18.19 (s), 16.86 (q), 16.02 (q), 14.57 (q), 12.80 (q), 12.59 (q), $12.13(\mathrm{q}),-4.25(\mathrm{q})$, and $-4.93(\mathrm{q}) ; m / z$ (e.i.) $729\left(M^{+}\right.$, 33%), $340(15), 274(10)$, and $149(100)$ [Found: m / z (c.i.-h.r.m.s.), 728.4535. $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{NO}_{8} \mathrm{Si}\left(M^{+}-\mathrm{H}\right)$ requires m / z 728.4558].

Allylic Alcohol (53).-Reduction of the ester (52) (11.14 g, 15.27 mmol) with DIBAL-H (1 m in toluene; 39.7 ml) in toluene $(130 \mathrm{ml})$ at $-33^{\circ} \mathrm{C}$, according to the method described for the alcohol (45), afforded the allylic alcohol (53) (10.55 g, 99\%) as a colourless viscous oil after flash chromatography on silica gel (hexane- $60 \% \mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}+68.9^{\circ}\left(c 0.52\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\text {max. }}$. (film) $3650-3250,2960,2930,2860,1610,1590,1520,1480$, $1430,1400,1345,1250,1230,1200,1180,1100,1050,1010$, $875,840,775$, and $755 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.95(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 5-\mathrm{H}), 6.62$ $(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.90(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 5.52\left(1 \mathrm{H}, \mathrm{dt}, J 10.9, J^{\prime}\right.$ $6.9 \mathrm{~Hz}, 10-\mathrm{H}), 5.23(1 \mathrm{H}, \mathrm{t}, J 10.9 \mathrm{~Hz}, 11-\mathrm{H}), 5.09(1 \mathrm{H}, \mathrm{d}, J 10.1$ $\mathrm{Hz}, 15-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{d}, J 5.6 \mathrm{~Hz}, 21-\mathrm{H}), 4.19-4.07(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H})$, $3.79(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.69(1 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, 13-\mathrm{H}), 3.38(3 \mathrm{H}, \mathrm{s}$, $17-\mathrm{OMe}), 3.29$ ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{OMe}^{*}$), 3.26 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}^{*}$), $3.26-$ $3.20(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 3.16(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}), 3.04\left(1 \mathrm{H}, \mathrm{dd}, J 7.5, J^{\prime}\right.$ $3.0 \mathrm{~Hz}, 17-\mathrm{H}), 2.72-2.59(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.54-2.42(1 \mathrm{H}, \mathrm{m}, 16-$ H), 2.07 ($3 \mathrm{H}, \mathrm{s}$, ArMe), 2.02 ($3 \mathrm{H}, \mathrm{s}$, ArMe), $2.04-1.94$ ($1 \mathrm{H}, \mathrm{m}$, $20-\mathrm{H}), 1.68-1.57(2 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}$ and OH$), 1.52(3 \mathrm{H}, \mathrm{d}, J 1.2 \mathrm{~Hz}$, $14-\mathrm{Me}), 1.36-1.25(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 0.98(6 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 12-\mathrm{Me}$ and $16-\mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{BuSi}\right), 0.89(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 20-\mathrm{Me})$, $0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and $-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}}$ 155.09(s), 148.43 (s), 136.13 (s), 136.05 (s), 135.52 (d), 131.19 (s), 130.58 (d), 129.35 (s), 128.43 (s), 128.17 (d), 114.03 (d), 112.36 (d), 105.95 (d), 105.72 (d), 85.35 (d), 83.29 (d), 82.48 (d), 80.45 (d), 60.26 (q), 59.57 (q), 58.61 (t), 57.39 (q), 56.76 (q), 55.63 (q), 37.13 (d), 35.53 (d), 34.50 (d), 33.12 (t), 25.90 (q), 18.27 (s), 18.13 (q), 16.83 (q), $14.59(\mathrm{q}), 12.81(\mathrm{q}), 12.61(\mathrm{q}), 11.77(\mathrm{q}),-4.33(\mathrm{q})$, and -4.93 ; m / z (e.i.) $701\left(M^{+}, 5 \%\right), 404(25), 340(40), 274(50)$, and $149(50)$ [Found: m / z (c.i.-h.r.m.s.), 700.4614. $\mathrm{C}_{40} \mathrm{H}_{66} \mathrm{NO}_{7} \mathrm{Si}\left(M^{+}-\mathrm{H}\right)$ requires $m / z 700.4609$].

Preparation of the Aniline (55).-To a solution of the pyrrole compound (53) ($5.18 \mathrm{~g}, 7.38 \mathrm{mmol}$) in absolute EtOH (60 ml) was added a solution of $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}(15.38 \mathrm{~g}, 221.4 \mathrm{mmol})$ and $\mathrm{KOH}(8.28 \mathrm{~g}, 148 \mathrm{mmol})$ in water (25 ml) and the resulting white suspension was refluxed (bath temperature $125^{\circ} \mathrm{C}$) for 48 h under argon. After being cooled to room temperature, water $(100 \mathrm{ml})$ was added and the ethanol was removed under reduced pressure. The remaining aqueous solution was basified with $10 \% \mathrm{NaOH}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{ml})$, and the combined organic phases were washed once with brine (75 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography of
the residue (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-50 \% \mathrm{EtOAc}$) gave recovered (53) $(1.3 \mathrm{~g}, 25 \%)$ and amine (55) $[3.23 \mathrm{~g}, 70 \% ; 93 \%$ based on recovered (53)] as a colourless viscous oil; $[\alpha]_{\mathrm{D}}+51.1^{\circ}(c 1.0$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3550-3300,3000,2960,2930$, $2860,1610,1490,1460,1350,1250,1240,1200,1170,1155$, $1100,1070,1050,1005$, and $840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 6.30(1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}$, ArH), $6.23(1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}, \mathrm{ArH}), 5.50\left(1 \mathrm{H}, \mathrm{dt}, J 10.9, J^{\prime} 6.9 \mathrm{~Hz}\right.$, $10-\mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{t}, J 10.9 \mathrm{~Hz}, 11-\mathrm{H}), 5.08(1 \mathrm{H}, \mathrm{d}, J 9.9 \mathrm{~Hz}, 15-\mathrm{H})$, $4.36(1 \mathrm{H}, \mathrm{d}, J 4.6 \mathrm{~Hz}, 21-\mathrm{H}), 4.17-4.05(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 3.73(3 \mathrm{H}$, s , ArOMe), 3.71 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.67 ($1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, 13-\mathrm{H}$), 3.44 ($3 \mathrm{H}, \mathrm{s}, 17-\mathrm{OMe}$), $3.30\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{OMe}^{*}\right.$), $3.25(3 \mathrm{H}, \mathrm{s}$, $21-\mathrm{OMe}^{*}$), $3.25-3.20(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 3.06\left(1 \mathrm{H}, \mathrm{dd}, J 7.4, J^{\prime} 3.0\right.$ $\mathrm{Hz}, 17-\mathrm{H}), 2.69-2.58(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.55-2.44(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H})$, 2.04-1.95 ($1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.75-1.66(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.50(3 \mathrm{H}$, d, $J 1.3 \mathrm{~Hz}, 14-\mathrm{Me}), 1.40-1.32(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.7$ $\mathrm{Hz}, 16-\mathrm{Me}), 0.98(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 12-\mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{BuSi}\right)$, $0.86(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}), 0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and -0.02 (3 $\mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}} 156.32$ (s), 140.15 (s), 139.93 (s), 136.10 (s), 135.27 (d), 135.03 (s), 130.64 (d), 128.31 (d), 101.80 (d), 101.05 (d), 85.46 (d), 83.40 (d), 82.25 (d), 80.85 (d), 60.28 (q), 59.85 (q), 58.64 (t), 57.31 (q), 56.78 (q), 55.40 (q), 37.11 (d), 35.71 (d), 34.38 (d), 33.52 $(\mathrm{t}), 25.89(\mathrm{q}), 18.22(\mathrm{q}$ and s$), 16.77(\mathrm{q}), 14.27(\mathrm{q}), 11.56(\mathrm{q}),-4.34$ (q), and $-4.94(\mathrm{q}) ; m / z(\mathrm{e} . \mathrm{i}) 623\left(M^{+}, 10 \%\right), 326(40), 262(100)$, 196 (53) [Found: m / z (c.i.-h.r.m.s.), $622.4154 . \mathrm{C}_{34} \mathrm{H}_{60} \mathrm{NO}_{7} \mathrm{Si}$ ($M^{+}-\mathrm{H}$) requires m / z 622.4139].

Trifluoroacetamide (56).-To a cooled $\left(-8^{\circ} \mathrm{C}\right)$ and stirred solution of the aniline (55) $(7.63 \mathrm{~g}, 12.24 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(65 \mathrm{ml})$ and dry $\mathrm{Et}_{3} \mathrm{~N}(10.2 \mathrm{ml}, 73.4 \mathrm{mmol})$ was added dropwise, under nitrogen, trifluoroacetic anhydride (TFAA; $5.2 \mathrm{ml}, 36.7$ mmol) over 10 min . The reaction mixture was then allowed to warm to room temperature and stirred for a further 40 min before it was quenched with pH 7 phosphate buffer (130 ml). Methanol (400 ml) was added and stirring was continued for 15 min . Volatiles were removed under vacuum and products were extracted into $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{ml})$, washed with 5% aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{ml}), 1 \mathrm{~m} \mathrm{HCl}(100 \mathrm{ml})$, and brine (100 ml), then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography (silica gel, hexane $-60 \% \mathrm{Et}_{2} \mathrm{O}$) of the residue gave the trifluoroacetamide ($8.33 \mathrm{~g}, 95 \%$) as a colourless thick gum; $[\alpha]_{\mathrm{D}}$ $+38.9^{\circ}\left(c 0.60\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3550-3360,3000$, $2960,2940,2860,1730,1600,1540,1470,1430,1360,1330$, $1170,1100,1050,1000,880$, and $840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 8.63(1 \mathrm{H}$, br s, NH), $7.73(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 3-\mathrm{H}), 6.77(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 5-\mathrm{H}), 5.51$ $\left(1 \mathrm{H}, \mathrm{dt}, J 10.9, J^{\prime} 6.8 \mathrm{~Hz}, 10-\mathrm{H}\right), 5.51(1 \mathrm{H}, \mathrm{t}, J 10.9 \mathrm{~Hz}, 11-\mathrm{H})$, $5.07(1 \mathrm{H}, \mathrm{d}, J 10.6 \mathrm{~Hz}, 15-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{d}, J 4.5 \mathrm{~Hz}, 21-\mathrm{H}), 4.11$ ($2 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 9-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 3.75(3 \mathrm{H}, \mathrm{s}$, ArOMe), 3.67 ($1 \mathrm{H}, \mathrm{d}, J 7.9 \mathrm{~Hz}, 13-\mathrm{H}$), 3.44 ($3 \mathrm{H}, \mathrm{s}, 17-\mathrm{OMe}$), 3.31 ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{OMe}^{*}$), 3.25 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}^{*}$), $3.24-3.18(1 \mathrm{H}$, $\mathrm{m}, 18-\mathrm{H}), 3.08\left(1 \mathrm{H}, \mathrm{dd}, J 7.7, J^{\prime} 2.8 \mathrm{~Hz}, 17-\mathrm{H}\right), 2.68-2.56(1 \mathrm{H}$, $\mathrm{m}, 12-\mathrm{H}), 2.52-2.42(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 2.02-1.90(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H})$, $1.73-1.64(2 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}$ and OH$), 1.49(3 \mathrm{H}, \mathrm{d}, J 1.2 \mathrm{~Hz}, 14-\mathrm{Me})$, $1.40-1.32(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.01$ ($3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 16-\mathrm{Me}$), 0.98 (3 $\mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 12-\mathrm{Me}), 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{t} \mathrm{BuSi}\right), 0.82(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}$, $20-\mathrm{Me}), 0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and $-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$; $\delta_{\mathrm{C}} 156.19$ (s), 154.65 (q, J $37.3 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CO}$), 141.78 (s), 136.33 (s), 135.44 (d), 135.41 (s), 130.52 (d), 129.30 (s), 128.15 (d), 118.01 (q, $J 288$ $\mathrm{Hz}, \mathrm{CF}_{3}$), 110.40 (d), 105.77 (d), 85.04 (d), 83.35 (d), 82.12 (d), 81.03 (d), $61.65(\mathrm{q}), 60.38(\mathrm{q}), 58.66(\mathrm{t}), 57.44(\mathrm{q}), 56.62(\mathrm{q}), 55.70$ (q), 37.05 (d), 35.75 (d), 34.47 (d), 33.26 (t), 25.85 (q), 18.22 (q and s), 16.89 (q), 13.98 (q), 11.54 (q), -4.37 (q), and $-4.98(\mathrm{q}) ; m / z$ (c.i.) $718\left(M^{+}-1,23 \%\right), 699(100)$, and 519 (10) [Found: m / z, 718.3962. $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{~F}_{4} \mathrm{NO}_{8} \mathrm{Si}\left(M^{+}-\mathrm{H}\right)$ requires 718.3962].

Aldehyde (57).-To a solution of the allylic alcohol (56) (5.92 $\mathrm{g}, 8.23 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was added PDC $(6.19 \mathrm{~g}$, 16.46 mmol) and the resulting mixture was stirred at room temperature for 6.5 h under nitrogen. The chromium salts were
removed by filtration through a plug of flash silica gel and washed with $\mathrm{Et}_{2} \mathrm{O}$ (ca. 11 l). Solvents were removed under vacuum and the residue was purified by flash chromatography (silica gel, hexane- $50 \% \mathrm{Et}_{2} \mathrm{O}$) to give a $11: 1$ mixture (5.58 g , 95%) of the required aldehyde (57) and the corresponding (E)isomer at $\mathrm{C}(10)-\mathrm{C}(11)$, which crystallized together from hexane, m.p. $118-119^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}+60.8^{\circ}$ (c 0.50 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3400,2960,2930,2860,1730,1680,1600$, $1540,1480,1430,1175,1100,1075,1000$, and $840 \mathrm{~cm}^{-1}$; δ_{H} (major isomer) $10.01(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 9-\mathrm{H}), 8.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH), $7.76(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 3-\mathrm{H}), 6.76(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 5-\mathrm{H}), 6.35$ $(1 \mathrm{H}, \mathrm{t}, J 11.1 \mathrm{~Hz}, 11-\mathrm{H}), 5.86\left(1 \mathrm{H}, \mathrm{dd}, J 11.1, J^{\prime} 8.0 \mathrm{~Hz}, 10-\mathrm{H}\right)$, $5.21(1 \mathrm{H}, \mathrm{d}, J 9.8 \mathrm{~Hz}, 15-\mathrm{H}), 4.35(1 \mathrm{H}, \mathrm{d}, J 4.5 \mathrm{~Hz}, 21-\mathrm{H}), 3.81$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 3.79(1 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, 13-\mathrm{H}), 3.75(3 \mathrm{H}, \mathrm{s}$, ArOMe), 3.44 ($3 \mathrm{H}, \mathrm{s}, 17-\mathrm{OMe}$), $3.42-3.30(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 3.31$ ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{OMe}^{*}$), 3.26 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}^{*}$), $3.18-3.11(1 \mathrm{H}, \mathrm{m}$, $18-\mathrm{H}), 3.06\left(1 \mathrm{H}, \mathrm{dd}, J 7.8, J^{\prime} 2.6 \mathrm{~Hz}, 17-\mathrm{H}\right), 2.51-2.42(1 \mathrm{H}, \mathrm{m}$, $16-\mathrm{H}), 1.99-1.90(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.73-1.65(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.52$ $(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}), 1.02(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 16-\mathrm{Me}), 0.90(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{\mathrm{t}} \mathrm{BuSi}\right), 0.77(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}), 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and 0.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$); δ_{C} (major isomer) 190.67 (d), 156.15 (s), 154.78 (d), 141.72 (s), 135.59 (s), 135.23 (s), 131.54 (d), 129.26 (s), 129.16 (d), 110.32 (d), 105.63 (d), 84.77 (d), 82.44 (d), 82.06 (d), 80.94 (d), 61.65 (q), 60.62 (q), 57.40 (q), 56.90 (q), 55.70 (q), 37.58 (d), 35.54 (d), 34.48 (d), 33.32 (t), 25.81 (q), 18.18 (s), 17.86 (q), $16.52(\mathrm{q}), 13.94(\mathrm{q}), 11.79(\mathrm{q}),-4.32(\mathrm{q})$, and $-4.96(\mathrm{q}) ; m / z(\mathrm{c} . \mathrm{i}$. 717 ($M^{+}, 100 \%$), 633 (19), 519 (10) (Found: $m / z 717.3867$; C, $60.10 ; \mathrm{H}, 8.10 ; \mathrm{N}, 1.93 . \mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{Si}$ requires $m / z, 717.3884$; $\mathrm{C}, 60.23 ; \mathrm{H}, 8.14 ; \mathrm{N}, 1.95 \%$).
(Z,E,)-Diene (58).-To a solution of the aldehyde (57) (11:1 $Z: E, 5.40 \mathrm{~g}, 7.52 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (75 ml) was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CMeCOOEt}$ ($5.45 \mathrm{~g}, 15.05 \mathrm{mmol}$) and the resulting yellow solution was refluxed under nitrogen for 40 h . The reaction was worked up as in the case of olefin (28) and the residue was purified by flash chromatography on silica gel (toluene-15\% $\mathrm{Et}_{2} \mathrm{O}$) to give pure (Z, E)-diene (58) $[5.26 \mathrm{~g}, 83 \%$ from (56)] as a white solid which crystallized from $90 \% \mathrm{EtOH}-$ $\mathrm{H}_{2} \mathrm{O}$, m.p. $110-111{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}+101.3^{\circ}$ (c 0.40 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3400,2960,2940,2860,1730,1700,1600$, $1540,1470,1430,1370,1330,1250,1170,1$ 100, 1050,1000 , 875 , and $840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 8.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.78(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}$, $3-\mathrm{H}), 7.42(1 \mathrm{H}$, br d, $J 11.9 \mathrm{~Hz}, 9-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 5-\mathrm{H})$, $6.13(1 \mathrm{H}, \mathrm{t}, J 11.7 \mathrm{~Hz}, 15-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{t}, J 10.7 \mathrm{~Hz}, 11-\mathrm{H}), 5.12$ $(1 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, 15-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{d}, J 4.6 \mathrm{~Hz}, 21-\mathrm{H}), 4.20(2 \mathrm{H}, \mathrm{q}, J$ $7.1 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 3.73 ($1 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}, 13-\mathrm{H}$), $3.44(3 \mathrm{H}, \mathrm{s}, 17-\mathrm{OMe}), 3.30(3 \mathrm{H}, \mathrm{s}$, $\left.18-\mathrm{OMe}^{*}\right)$, 3.22 ($3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}^{*}$), $3.18-3.12(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}$), 3.07 ($1 \mathrm{H}, \mathrm{dd}, J 8.3, J^{\prime} 2.4 \mathrm{~Hz}, 17-\mathrm{H}$), $2.96-2.84(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H})$, $2.46-2.36(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 2.01-1.90(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.83(3 \mathrm{H}$, d, $J 1.1 \mathrm{~Hz}, 8-\mathrm{Me}), 1.71-1.61(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.51(3 \mathrm{H}, \mathrm{d}, J 1.1$ $\mathrm{Hz}, 14-\mathrm{Me}), 1.35-1.26(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.30(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 1.01(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 12-\mathrm{Me}), 1.00(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}$, $16-\mathrm{Me}), 0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{\text {'BuSi}}\right), 0.74(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}), 0.01$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and $0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}) ; \delta_{\mathrm{C}} 168.44$ (s), 156.19 (s), 141.85 (d), 141.61 (s), 136.40 (s), 135.32 (s), 132.52 (d), 130.55 (d), 129.28 (s), 127.67 (s), 123.07 (d), 110.20 (d), 105.55 (d), 84.73 (d), 82.29 (d), 82.28 (d), 80.97 (d), 61.71 (q), 60.72 (q), 60.56 (t), 57.38 (q), 56.81 (q), 55.68 (q), 37.50 (d), 35.44 (d), 34.57 (d), 33.28 (t), 25.88 (q), 18.22 (s), 17.72 (q), 16.76 (q), 14.33 (q), $13.90(\mathrm{q}), 12.32$ (q), 11.87 (q), $-4.27(\mathrm{q})$, and -4.88 (q); m / z (c.i.) $802\left(M^{+}+1\right.$, 100%) (Found: C, $61.35 ; \mathrm{H}, 8.50 ; \mathrm{N}, 1.75 . \mathrm{C}_{41} \mathrm{H}_{66} \mathrm{~F}_{3} \mathrm{NO}_{9} \mathrm{Si}$ requires $\mathrm{C}, 61.40 ; \mathrm{H}, 8.29 ; \mathrm{N}, 1.75 \%$).

Amino Acid (59).-To a solution of the ester (58) ($4.5 \mathrm{~g}, 5.61$ mmol) in THF-MeOH-water ($2: 2: 1 ; 180 \mathrm{ml}$) was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.36 \mathrm{~g}, 56.1 \mathrm{mmol})$ and the resulting mixture was stirred at room temperature for 24 h under nitrogen. Methanol
and THF were removed under vacuum and the remaining aqueous solution was acidified to pH 5 with 10% aqueous $\mathrm{NaH}_{2} \mathrm{PO}_{4}(400 \mathrm{ml})$ and saturated with NaCl . The products were extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed in vacuo to give the crude amino acid (59) $(3.86 \mathrm{~g}, 100 \%)$, which was used in the next step without further purification after being azeotropically dried with toluene $(2 \times 100 \mathrm{ml})$ and further dried at high vacuum $(<0.04 \mathrm{mmHg})$ overnight; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.55(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}, 9-\mathrm{H})$, $6.29(1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}, \mathrm{ArH}), 6.24(1 \mathrm{H}, \mathrm{d}, J 3.0 \mathrm{~Hz}, \mathrm{ArH}), 6.16$ (1 $\mathrm{H}, \mathrm{t}, J 11.6 \mathrm{~Hz}, 10-\mathrm{H}), 5.60(1 \mathrm{H}, \mathrm{t}, J 10.4 \mathrm{~Hz}, 11-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{d}$, $J 9.8 \mathrm{~Hz}, 15-\mathrm{H}), 4.34(1 \mathrm{H}, \mathrm{d}, J 4.7 \mathrm{~Hz}, 21-\mathrm{H}), 3.74(1 \mathrm{H}, \mathrm{d}, J 7.1$ $\mathrm{Hz}, 13-\mathrm{H}), 3.73$ ($3 \mathrm{H}, \mathrm{s}$, ArOMe), 3.71 ($3 \mathrm{H}, \mathrm{s}$, ArOMe), 3.44 (3 H , $\mathrm{s}, 17-\mathrm{OMe}), 3.31\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{OMe}^{*}\right), 3.24\left(3 \mathrm{H}, \mathrm{s}, 21-\mathrm{OMe}^{*}\right)$, $3.22-3.14(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 3.06\left(1 \mathrm{H}, \mathrm{dd}, J 7.8, J^{\prime} 2.5 \mathrm{~Hz}, 17-\mathrm{H}\right)$, $3.00-2.82(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.50-2.36(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 2.00-1.88$ $(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}), 1.84(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{Me}), 1.74-1.62(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H})$, $1.50(3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}), 1.36-1.26(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.03(3 \mathrm{H}, \mathrm{d}, J 7.0$ $\mathrm{Hz}, 12-\mathrm{Me}), 1.00(3 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}, 16-\mathrm{Me}), 0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{BuSi}\right)$, $0.78(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}), 0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and $-0.08(3$ $\mathrm{H}, \mathrm{s}, \mathrm{MeSi}$).

Macrolactam (60).-Method A : To a warmed $\left(60^{\circ} \mathrm{C}\right)$ and stirred solution of 2-mesitylenesulphonyl chloride ($34 \mathrm{mg}, 0.155$ $\mathrm{mmol})$ and dry ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(29 \mu \mathrm{l}, 0.166 \mathrm{mmol})$ in anhydrous toluene (5 ml) was added dropwise (syringe pump addition; 1.2 $\mathrm{ml} / \mathrm{h})$ a solution of the amino acid (59) $(10 \mathrm{mg}, 0.015 \mathrm{mmol})$ and ${ }^{i} \operatorname{Pr}_{2} \operatorname{NEt}(5.15 \mu l, 0.030 \mathrm{mmol})$ in anhydrous toluene $(10 \mathrm{ml})$ over 8.5 h under nitrogen. Stirring was continued for a further 6 h at $60^{\circ} \mathrm{C}$ before the pale yellow solution was allowed to cooled to room temperature and excess sulphonyl chloride was destroyed by reaction with wet pyridine (10% water in pyridine; 0.5 ml) for 15 min . Solvents were removed under vacuum and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$, washed with 10% aqueous $\mathrm{NaH}_{2} \mathrm{PO}_{4}(6 \mathrm{ml})$ and brine $(6 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography (silica gel, $\mathrm{Et}_{2} \mathrm{O}$) of the residue gave the macrolactam (60) ($7 \mathrm{mg}, 72 \%$).

Method B: To a solution of the crude amino acid (59) (2 g , $2.95 \mathrm{mmol})$ and dry ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{NEt}(5.14 \mathrm{ml}, 29.50 \mathrm{mmol})$ in anhydrous toluene (2 1) was added bis(2-oxo-3-oxazolidinyl)phosphinic chloride $(2.25 \mathrm{~g}, 8.84 \mathrm{mmol})$ in one portion and the mixture was stirred at $85^{\circ} \mathrm{C}$ for 16 h under nitrogen. After being cooled to room temperature, 10% aqueous $\mathrm{NaH}_{2} \mathrm{PO}_{4}(300 \mathrm{ml})$ was added, then the mixture was stirred for 5 min and the organic phase was decanted off. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 300 \mathrm{ml})$ and the combined organic phases were washed once with brine (300 ml), dried (MgSO_{4}), and concentrated. Flash chromatography of the residue (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-40 \% \mathrm{EtOAc}$) gave the macrolactam (60) [1.65 g, 85% from (58)] as a white solid; all attempts to crystallize this compound have so far been unsuccessful; $[\alpha]_{\mathrm{D}}+78.5^{\circ}(c 0.33$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3380,3000,2960,2930,2860,1650$, $1600,1480,1460,1375,1310,1250,1100,1070,1050,1005$, 875 , and $840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 9.27(1 \mathrm{H}$, br s, NH), $6.63(1 \mathrm{H}, \mathrm{d}, J 2.9 \mathrm{~Hz}, 3-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{d}, J 2.9 \mathrm{~Hz}, 5-\mathrm{H}), 5.93$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{d}, J 11.2 \mathrm{~Hz}, 9-\mathrm{H}), 5.78(1 \mathrm{H}, \mathrm{t}, J 11.1 \mathrm{~Hz}, 10-\mathrm{H}), 5.10(1$ $\mathrm{H}, \mathrm{t}, J 10.8 \mathrm{~Hz}, 11-\mathrm{H}), 4.87(1 \mathrm{H}, \mathrm{d}, J 10.1 \mathrm{~Hz}, 15-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{d}$, $J 5.3 \mathrm{~Hz}, 21-\mathrm{H}), 3.67(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.53(1 \mathrm{H}, \mathrm{d}, J 9.6 \mathrm{~Hz}, 13-$ $\mathrm{H}), 3.43$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.39 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.21 ($3 \mathrm{H}, \mathrm{s}$, OMe), 3.16 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.10(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, 17-\mathrm{H}), 2.89-2.83$ (1 $\mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 2.49-2.40(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.16-1.98(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}$ and $20-\mathrm{H}), 1.79(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{Me}), 1.45-1.36(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 0.97(3$ $\mathrm{H}, \mathrm{s}, 14-\mathrm{Me}), 0.90(3 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, 16-\mathrm{Me}), 0.84(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}$, $12-\mathrm{Me}), 0.83\left(9 \mathrm{H}, \mathrm{s},{ }^{\text {'BuSi}}\right), 0.64(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}), 0.60-$ $0.50(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 0.00(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$, and $-0.07(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeSi}) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 173.63$ (s), 155.45 (s), 146.32 (s), 136.75 (d), 135.42 (s), 134.03 (s), 133.32 (s), 132.82 (s), 128.86 (d), 123.97 (d), 123.10 (d), 109.38 (d), 108.87 (d), 83.67 (d),
82.60 (d), 81.81 (d), 80.49 (d), $60.70(\mathrm{q}), 59.88(\mathrm{q}), 56.61(\mathrm{q}), 56.29$ (q), 55.05 (q), 36.26 (d), 35.11 (d), 34.78 (d), 25.83 (q), 18.89 (q), 17.99 (t), 17.85 (q), 15.34 (q), 13.42 (q), 10.35 (q), $-4.28(q)$, and -4.88 (q); m / z (e.i.) $659\left(M^{+}, 90 \%\right.$), 383 (47), 338 (17), 261 (25), 149 (26), and 91 (100) (Found: m / z 659.4211. $\mathrm{C}_{37} \mathrm{H}_{61} \mathrm{NO}_{7} \mathrm{Si}$ requires $m / z 659.4217$).

Macrocyclic Alcohol (61).-To a solution of the silylated macrolactam (60) $(1.52 \mathrm{~g}, 2.31 \mathrm{mmol})$ in anhydrous THF (20 ml) was added TBAF (1 M in THF; 12 ml) and the resulting green solution was stirred under nitrogen for 41 h . Ether (180 ml) was added and the solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 40 \mathrm{ml})$ and brine $(40 \mathrm{ml})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography of the residue (silica gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-65 \% \mathrm{EtOAc}\right)$ gave the alcohol (61) $(1.10 \mathrm{~g}, 89 \%)$ which crystallized from $50 \% \mathrm{EtOH}$-water as white needles, m.p. 197$198^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+84.5^{\circ}\left(c 0.20\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; v_{\max .}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3600$, $3380,3050,2960,2930,2820,1655,1600,1520,1460,1360$, $1310,1220,1200,1170,1160,1100,1075,1050$, and 1000 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) 9.28(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{NH}), 6.61$ (1 H , br s, $3-\mathrm{H}), 6.43(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 5-\mathrm{H}), 5.95(1 \mathrm{H}$, br d, J $11.0 \mathrm{~Hz}, 9-\mathrm{H}), 5.77(1 \mathrm{H}, \mathrm{t}, J 11.1 \mathrm{~Hz}, 10-\mathrm{H}), 5.08(1 \mathrm{H}$, br t, $J 10.4$ $\mathrm{Hz}, 11-\mathrm{H}), 4.83(1 \mathrm{H}$, br d, $J 9.8 \mathrm{~Hz}, 15-\mathrm{H}), 4.59(1 \mathrm{H}, \mathrm{d}, J 4.4 \mathrm{~Hz}$, $13-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{d}, J 5.1 \mathrm{~Hz}, 21-\mathrm{H}), 3.69(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.43$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.21$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.16 ($3 \mathrm{H}, \mathrm{s}$, OMe), $3.08(1 \mathrm{H}$, br d, $J 8.7 \mathrm{~Hz}, 17-\mathrm{H}), 2.94-2.84(1 \mathrm{H}, \mathrm{m}$, $18-\mathrm{H}), 2.46-2.29(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.16-1.96(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}$ and $20-\mathrm{H}), 1.80(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{Me}), 1.49-1.36(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 0.93(3 \mathrm{H}, \mathrm{s}$, $14-\mathrm{Me}), 0.90(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, 16-\mathrm{Me}), 0.85(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}$, $12-\mathrm{Me}), 0.62(3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me})$, and $0.63-0.50(1 \mathrm{H}, \mathrm{m}$, $19-\mathrm{H}) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$) 173.69 (s), 155.58 (s), 146.24 (s), 137.89 (d), 136.51 (s), 134.04 (s), 133.46 (s), 132.67 (s), 128.08 (d), 124.21 (d), 122.59 (d), 109.51 (d), 108.62 (d), 84.05 (d), 81.74 (d), 80.67 (d), 60.61 (q), 59.96 (q), 56.68 (q), 56.33 (q), 55.12 (q), 35.70 (d), 35.32 (d), 34.78 (d), 26.21 (t), 18.49 (q), 15.28 (q), 13.41 (q), and $10.86(\mathrm{q}) ; m / z$ (e.i.) $546\left(M^{+}, 42 \%\right.$), 482 (19), 424 (100), 302 (24), and 196 (62) (Found: $m / z, 545.3353 ;$ C, 67.86; H, 8.62; $\mathrm{N}, 2.54 \% . \mathrm{C}_{31} \mathrm{H}_{4}{ }_{7} \mathrm{NO}_{7} \mathrm{~m} / \mathrm{z}, 545.3352 ; \mathrm{C}, 68.23 ; \mathrm{H}, 8.68 ; \mathrm{N}$, 2.57%).

Macrocyclic Carbamate (62).-To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and slowly stirred solution of the alcohol $(61)(100 \mathrm{mg}, 0.183 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added solid sodium cyanate $(143 \mathrm{mg}, 2.20$ mmol) in one portion followed by trifluoroacetic acid (169 μ l, 2.20 mmol) over 9 min under nitrogen. The reaction mixture was allowed to warm to room temperature, then it was diluted with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and stirring was continued for 3 h . Water $(10 \mathrm{ml})$ was added and the products were extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$, washed with 5% aqueous $\mathrm{NaHCO}_{3}(15$ ml), and brine (15 ml), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography of the residue (silica gel, $\mathrm{Et}_{2} \mathrm{O}-15 \% \mathrm{EtOAc}$) gave the carbamate (62) ($92 \mathrm{mg}, 86 \%$) as a white solid which did not crystallize from various solvents; $[\alpha]_{\mathrm{D}}+91.5^{\circ}$ (c 0.13 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}-3540,3430,3380,3000,2980,2940\right.$, $2880,2830,1730,1655,1585,1520,1460,1360,1310,1170$, and $1110 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 9.26(1 \mathrm{H}$, br s, $\mathrm{NH}), 6.63(1 \mathrm{H}$, br s, $3-\mathrm{H}), 6.44(1 \mathrm{H}, \mathrm{d}, J 3.1 \mathrm{~Hz}, 5-\mathrm{H}), 6.32(2 \mathrm{H}$, br s, NH_{2}), $6.00-5.80(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$ and $10-\mathrm{H}), 5.14(1 \mathrm{H}$, br t, $11-\mathrm{H}), 4.99(1 \mathrm{H}, \mathrm{d}, J 10.2 \mathrm{~Hz}, 15-\mathrm{H}), 4.64-4.52(1 \mathrm{H}, \mathrm{m}, 13-\mathrm{H})$, $4.35(1 \mathrm{H}, \mathrm{d}, J 4.8 \mathrm{~Hz}, 21-\mathrm{H}), 3.69(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe}), 3.44$ ($3 \mathrm{H}, \mathrm{s}$, OMe), 3.39 ($3 \mathrm{H}, \mathrm{s}$, OMe), 3.22 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.17 ($3 \mathrm{H}, \mathrm{s}$, OMe), $3.12(1 \mathrm{H}, \mathrm{d}, J 8.9 \mathrm{~Hz}, 17-\mathrm{H}), 2.92-2.82(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 2.68-$ $2.54(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.16-1.98(2 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}$ and $20-\mathrm{H}), 1.82(3$ $\mathrm{H}, \mathrm{s}, 8-\mathrm{Me}), 1.52-1.40(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 0.99(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 14-\mathrm{Me})$, $0.87(3 \mathrm{H}, \mathrm{d}, J 6.3 \mathrm{~Hz}, 16-\mathrm{Me}), 0.80(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, 12-\mathrm{Me}), 0.61$ ($3 \mathrm{H}, \mathrm{d}, J 6.8 \mathrm{~Hz}, 20-\mathrm{Me}$), and $0.62-0.50(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H})$; $\delta_{\mathrm{C}}\left(62.90 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 173.61,156.26,155.52,146.32$, $135.92,134.01,133.41,131.75,123.69,109.40,108.91,83.43$,
81.61, 80.54, 60.62, 60.01, 56.68, 55.17, 53.28, 34.90, 33.99, 26.05, $18.44,18.00,15.07,13.45,11.40 ; m / z$ (e.i.) $589\left(M^{+}, 5 \%\right), 546(20)$, 514 (5), 423 (40), 391 (17), 302 (18), 196 (36), 154 (60), and 74 (100) (Found: m / z 588.3427. $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires m / z 588.3411).
(+)-Macbecin I (1a).-Method A: CAN oxidation of (62). To a cooled $\left(-3{ }^{\circ} \mathrm{C}\right)$ and stirred solution of 1,4 -dimethylmacbecin II (62) ($47 \mathrm{mg}, 0.08 \mathrm{mmol}$) in MeCN (5 ml) and water $(0.2 \mathrm{ml})$ was added dropwise a solution of CAN ($131 \mathrm{mg}, 0.24 \mathrm{mmol}$) in MeCN -water ($1: 1,1 \mathrm{ml}$) over 2 min . After a further 8 min at this temperature, water (10 ml) was added and products were extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 35 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography of the remaining residue (silica gel, $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ afforded (+)-macbecin $\mathrm{I}(1 a)(16.5 \mathrm{mg}, 37 \%)$ as a yellow solid which crystallized from 50% EtOH-water, m.p. 205--206 ${ }^{\circ} \mathrm{C}$ (softening at $176^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}+377^{\circ} \mathrm{C}(c \quad 0.10$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3540,3430,3360,3020,2980,2940$, $1735,1695,1660,1650,1610,1580,1500,1385,1330,1260$, and $1095 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }}(\mathrm{MeOH}) 240(\mathrm{sh}), 272(\varepsilon 25000)$, and 390 $(\varepsilon 2000) \mathrm{nm} ; \delta_{\mathrm{H}} 8.89(1 \mathrm{H}$, br s, NH), $7.33(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 3-\mathrm{H})$, $7.13(1 \mathrm{H}, \mathrm{d}, J 11.8 \mathrm{~Hz}, 9-\mathrm{H}), 6.61\left(1 \mathrm{H}, \mathrm{dd}, J 2.5, J^{\prime} 1.5 \mathrm{~Hz}, 5-\mathrm{H}\right)$, 6.33 ($\left.1 \mathrm{H}, \mathrm{dt}, J 12.1, J^{\prime} 1.8 \mathrm{~Hz}, 10-\mathrm{H}\right), 5.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 13-\mathrm{H}), 5.68$ ($1 \mathrm{H}, \mathrm{dd}, J 10.7, J^{\prime} 6.7 \mathrm{~Hz}, 11-\mathrm{H}$), $5.28(1 \mathrm{H}$, br d, $J 10.1 \mathrm{~Hz}, 15-$ H), $4.70\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 4.58(1 \mathrm{H}$, br s, $21-\mathrm{H}), 3.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $18-\mathrm{H}), 3.53(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.34$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.29-3.20(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H}), 3.14-3.04(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.54-2.42$ ($1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}$), $1.99(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{Me}), 1.74-1.62(2 \mathrm{H}, \mathrm{m}, 19-\mathrm{H})$, $1.56-1.46$ ($1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}$), 1.50 ($3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}$), 1.09 ($3 \mathrm{H}, \mathrm{d}, J 6.5$ $\mathrm{Hz}, 16-\mathrm{Me}), 1.04(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 12-\mathrm{Me})$, and $0.80(3 \mathrm{H}, \mathrm{d}, J 7.0$ $\mathrm{Hz}, 20-\mathrm{Me}) ; \delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 187.89 (s), 183.98 (s), 169.19 (s), 155.81 (s), 144.88 (s), 141.21 (d), 138.25 (s), 133.19 (s), 132.26 (d), 131.67 (s), 129.00 (d), 127.30 (d), 124.17 (d), 112.90 (d), 83.64 (d), 83.03 (d), 79.27 (d), 77.13 (d), 60.26 (q), 58.33 (q), 55.65 (q), 34.81 (d), 33.96 (t), 33.54 (d), 17.20 (q), 15.26 (q), 15.03 (q), 13.46 (q), and $13.25(\mathrm{q}) ; m / z(\mathrm{c} . \mathrm{i}) 560\left(M^{+}+2,9 \%\right), 517(10)$, and 127 (100) [Found: $m / z \quad 560.3062 . \quad \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{8}\left(M^{+}+2 \mathrm{H}\right)$ requires $m / z 560.3097$).

The spectroscopic properties of synthetic (1a) were in full agreement with those published in the literature. ${ }^{2 b}$ The reported melting point and optical rotation for macbecin I are 187$188^{\circ} \mathrm{C}$ (decomp.) (no solvent specified) and $[\alpha]_{\mathrm{D}}+351^{\circ} \mathrm{C}(c$ $0.10, \mathrm{CHCl}_{3}$), respectively.

Method B: carbamoylation of (64). Reaction of decarbamoyl $(+)$-macbecin I ($40 \mathrm{mg}, 0.077 \mathrm{mmol}$) with sodium cyanate (64 $\mathrm{mg}, 0.98 \mathrm{mmol}$) and TFA ($75 \mu \mathrm{l}, 0.98 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$, using the conditions described for (62), gave (+)-macbecin I (1a) ($31 \mathrm{mg}, 72 \%$) together with recovered (64) $(6 \mathrm{mg}, 15 \%)$.

Silylated Decarbamoyl Macbecin I (63).-CAN oxidation of lactam (60) ($54 \mathrm{mg}, 0.08 \mathrm{mmol}$) in MeCN -water at $-3^{\circ} \mathrm{C}$, using the same conditions described for (+)-macbecin I (1a), afforded the title compound ($26 \mathrm{mg}, 50 \%$) as a yellow solid after flash chromatography on silica gel (hexane- $50 \% \mathrm{Et}_{2} \mathrm{O}$). The quinone (63) crystallized from $90 \% \mathrm{EtOH}$-water as yellow needles, m.p. $192-193{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+335^{\circ}\left(c 0.12\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $v_{\text {max. }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3380,2 960, 2 940, $2880,1695,1660,1650,1610,1500,1380$, $1310,1250,1210,1175,1155,1120,1100,1075,1020,870$, and $840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 8.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.34(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 3-\mathrm{H})$, $7.11(1 \mathrm{H}, \mathrm{d}, J 11.9 \mathrm{~Hz}, 9-\mathrm{H}), 6.63\left(1 \mathrm{H}, \mathrm{dd}, J 2.5, J^{\prime} 1.6 \mathrm{~Hz}, 5-\mathrm{H}\right)$, $6.31(1 \mathrm{H}, \mathrm{t}, J 11.9 \mathrm{~Hz}, 10-\mathrm{H}), 5.85\left(1 \mathrm{H}, \mathrm{dd}, J 10.9, J^{\prime} 7.8 \mathrm{~Hz}\right.$, $11-\mathrm{H}), 5.48(1 \mathrm{H}, \mathrm{d}, J 9.9 \mathrm{~Hz}, 15-\mathrm{H}), 4.48(2 \mathrm{H}, \mathrm{br}$ s, $21-\mathrm{H}$ and $13-\mathrm{H})$, 3.56 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 18-\mathrm{H}), 3.37(3 \mathrm{H}, \mathrm{s}$, OMe), 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.29(1 \mathrm{H}, \mathrm{br}$ d, $J 9.0 \mathrm{~Hz}, 17-\mathrm{H}$), $2.98-$ $2.88(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.60-2.48(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 2.02(3 \mathrm{H}, \mathrm{s}$, $8-\mathrm{Me}), 1.78-1.66(2 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 1.60-1.46(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H})$, 1.47 ($3 \mathrm{H}, \mathrm{s}, 14-\mathrm{Me}$), $1.07(3 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}, 16-\mathrm{Me}$), $0.97(3 \mathrm{H}, \mathrm{d}, J$ 6.5 Hz, 12-Me), 0.97 ($9 \mathrm{H}, \mathrm{s},{ }^{\text {'BuSi }}$), 0.77 ($3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 20-$

Me), 0.10 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$), and 0.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$); $\delta_{\mathrm{c}} 187.71$ (s), 184.35 (s), 168.84 (s), 145.73 (d), 144.84 (s), 138.28 (s), 135.66 (s), 132.69 (s), 132.51 (d), 129.40 (d), 128.87 (d), 122.67 (d), 112.90 (d), 83.27 (d), 82.35 (d), 79.44 (d), 60.27 (q), 58.36 (q), 56.06 (q), 36.74 (d), 34.59 (d), 34.14 (t), 26.08 (q), 18.36 (s), 16.86 (q), 14.99 (q), $13.42(\mathrm{q}), 12.79(\mathrm{q}), 12.31(\mathrm{q}),-3.90(\mathrm{q})$, and $-4.34(\mathrm{q}) ; m / z$ (c.i,) $631\left(M^{+}+2,100 \%\right.$), $545(21)$, and 127 (41) [Found: m / z 631.3872. $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{NO}_{7} \mathrm{Si}\left(M^{+}+2 \mathrm{H}\right)$ requires $m / z 631.3904$. Found: C, $66.36 ; \mathrm{H}, 8.74 ; \mathrm{N}, 2.11 \% \mathrm{C}_{35} \mathrm{H}_{5} \mathrm{NO}_{7} \mathrm{Si}$ requires C, 66.74; H, 8.80; N, 2.22\%].

Decarbamoyl (+)-Macbecin I (64).-Method A: CAN oxidation of the macrocyclic alcohol (61) ($30 \mathrm{mg}, 0.05 \mathrm{mmol}$), using the conditions described for (+)-macbecin I (1a), gave decarbamoyl macbecin I (64) ($10.5 \mathrm{mg}, 37 \%$) as a yellow solid after flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-20 \%\right.$ EtOAc).

Method B: To a solution of silylated decarbamoyl macbecin I (63) ($120 \mathrm{mg}, 0.19 \mathrm{mmol}$) in anhydrous THF (3 ml) was added TBAF (1 m in THF; 1.9 ml) and the resulting dark blue solution was stirred at room temperature for 48 h under nitrogen. The same work-up as in the case of compound (61), followed by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-20 \% \mathrm{EtOAc}\right)$, afforded recovered (63) ($17 \mathrm{mg}, 14 \%$) and decarbamoyl (+)-macbecin I (64) $(71 \mathrm{mg}, 73 \%$) which crystallized from EtOH-water as a yellow solid, m.p. $177-179^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+359^{\circ}\left(c 0.11\right.$ in CHCl_{3}) $\left\{\right.$ lit., $^{2 b}[\alpha]_{\mathrm{D}}+337.7^{\circ}\left(c 0.11\right.$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right\} ; \mathrm{v}_{\text {max. }}(\mathrm{KBr}) 3580,3500$, $3380,2930,2870,2830,1680,1660,1650,1610,1505,1375$, $1310,1260,1230,1200,1170,1160,1100,1070,1000,930$, and $870 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 8.63(1 \mathrm{H}$, br s, NH), $7.32(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, 3-\mathrm{H})$, $7.14(1 \mathrm{H}, \mathrm{d}, J 11.8 \mathrm{~Hz}, 9-\mathrm{H}), 6.63\left(1 \mathrm{H}, \mathrm{dd}, J 2.5, J^{\prime} 1.7 \mathrm{~Hz}, 5-\mathrm{H}\right)$, $6.38\left(1 \mathrm{H}, \mathrm{dt}, J 12.2, J^{\prime} 1.7 \mathrm{~Hz}, 10-\mathrm{H}\right), 5.86\left(1 \mathrm{H}, \mathrm{dd}, J 10.6, J^{\prime} 6.9\right.$ $\mathrm{Hz}, 11-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{d}, J 10.1 \mathrm{~Hz}, 15-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 13-\mathrm{H})$, $4.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 21-\mathrm{H}), 3.54(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 18-\mathrm{H})$, $3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.33(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.28(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9 \mathrm{~Hz}, 17-$ H), $3.09-2.98(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.55-2.42(1 \mathrm{H}, \mathrm{m}, 16-\mathrm{H}), 2.01$ (3 $\mathrm{H}, \mathrm{s}, 8-\mathrm{Me}), 1.76-1.60(3 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}$ and $20-\mathrm{H}), 1.47(3 \mathrm{H}, \mathrm{s}, 14-$ Me), $1.10(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, 16-\mathrm{Me}), 0.99(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 12-$ Me), and 0.79 ($3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 20-\mathrm{Me}$); $\delta_{\mathrm{C}} 187.64$ (s), $184.40(\mathrm{~s})$, 168.78 (s), 144.93 (s), 143.68 (d), 138.05 (s), 134.90 (s), 133.09 (s), 132.53 (d), 129.26 (d), 127.94 (d), 123.46 (d), 112.90 (d), 83.71 (d), 83.33 (d), 77.99 (d), 76.82 (d), 60.47 (q), 58.36 (q), 55.54 (q), 38.07 (d), 34.98 (d), 33.98 (t), 17.81 (q), 15.14 (q), 13.15 (q), 12.35 (q), 11.95 (q); m / z (c.i.) $517\left(M^{+}+2,100 \%\right)$ and 485 (22) [Found: m / z 517.3038. $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{NO}_{7}\left(M^{+}+2\right)$ requires m / z, 517.3039. Found: C, $67.49 ; \mathrm{H}, 7.96 ; \mathrm{N}, 2.61 \% . \mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}_{7}$ requires C, 67.55; H, 8.01; N, 2.72\%].

Acknowledgements

J. L. Castro thanks M.S.D.R.L. (Harlow U.K.) for the provision of facilities and the Ministry of Education and Science (Spain) and British Council for a grant. We acknowledge the contribution of Dr. C. Swain for valuable advice and discussion. We are grateful to Dr. Murai of the Takeda Chemical Industries Ltd., Osaka, Japan for a gift of a sample of $(+)$-macbecin I isolated from natural sources.

References

1 S. Tanida, T. Hasegawa, and E. Higashide, J. Antibiot., 1980, 33, 199.
2 (a) M. Muroi, E. Haibara, M. Asai, K. Kamiya, and T. Kishi, Tetrahedron, 1981, 37, 1123; (b) M. Muroi, K. Haibara, M. Asai, and T. Kishi, Tetrahedron Lett., 1980, 21, 309.

3 C. DeBoer, P. A. Meulman, R. J. Wnuk, and D. M. Peterson, J. Antibiot., 1970, 23, 442.
4 S. Omura, Y. Iwai, Y. Takahashi, N. Sadakane, and A. Nakagawa, J. Antibiot., 1979, 32, 255.
5 S. Tanida, T. Hasegawa, K. Hatano, E. Higashide, and M. Yoneda, J. Antibiot., 1980, 33, 192.

6 M. Muroi, M. Izawa, Y. Kosai, and M. Asai, J. Antibiot., 1980, 33, 205. 7 D. A. Evans, P. L. Ornstein, and M. D. Ennis, 187th ACS Natl. Meet. (Apr. 8-13, St. Louis) 1984; MEDI-154.
8 R. Baker, W. J. Cummings, J. F. Hayes, and A. Kumar, J. Chem. Soc., Chem. Commun., 1986, 1237.
9 R. Baker and J. L. Castro, J. Chem. Soc., Perkin Trans. 1, 1989, 190; J. Chem. Soc., Chem. Commun., 1989, 378.
10 B. H. Lipshutz, Synthesis, 1986, 325 and references therein.
11 For an excellent review on the subject see: C. H. Heathcock in ‘Asymmetric Synthesis,' ed. J. D. Morrison, Academic Press, 1984, vol. 3, p. 111. See also T. Katsuki and M. Yamaguchi, Tetrahedron Lett., 1985, 26, 5807; M. Nerz-Stormes and E. R. Thornton, ibid., 1986, 27, 897.
12 W. C. Still and C. Gennari, Tetrahedron Lett., 1983, 24, 4405.
13 A. P. Krapcho, J. Org. Chem., 1962, 27, 2375.
14 D. A. Evans, J. Bartroli, and T. L. Shih, J. Am. Chem. Soc., 1981, 103, 2127.

15 D. A. Evans, T. C. Britton, and J. A. Ellman, Tetrahedron Lett., 1987, 28, 6141 .
16 P. Deslongchamps, 'Stereoelectronic Effects in Organic Chemistry,' Pergamon Press, New York, 1983.
17 Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765 and references therein.
18 (a) W. Oppolzer and P. Dudfield, Helv. Chim. Acta, 1985, 68, 216; (b) R. Gamboni, P. Mohr, N. Waespe-Sarcevic, and C. Tamm, Tetrahedron Lett., 1985, 26, 203; (c) R. Gamboni and C. Tamm, Helv. Chim. Acta, 1986, 69, 615; (d) D. A. Evans, M. M. Morrisey, and R. L. Dorow, J. Am. Chem. Soc., 1985, 107, 4346; (e) M. P. Gore and J. C. Vederas, J. Org. Chem., 1986, 51, 3700; (f) F. A. Davis and L. C. Vishwakarma, Tetrahedron Lett., 1985, 26, 3531; (g) F. A. Davis, M. S. Hague, T. G. Ulatowski, and J. C. Towson, J. Org. Chem., 1986, 51, 2402.
19 L. Rubenstein, J. Chem. Soc., 1925, 127, 1998.
20 R. Baker, J. L. Castro, and C. J. Swain, Tetrahedron Lett., 1988, 29, 2247.

21 S. P. Bruekelman, S. E. Leach, G. D. Meakins, and M. D. Tirel, J. Chem. Soc., Perkin Trans. 1, 1984, 2801.
22 A. J. Mancuso and D. Swern, Synthesis, 1981, 165.
23 J. R. Parikh and W. von E. Doering, J. Am. Chem. Soc., 1967, 89, 5505.
24 H. A. Staal, Angew. Chem., Int. Ed. Engl., 1962, 1, 351.
25 M. Araki, S. Sakata, H. Takei, and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1974, 47, 1777.
26 M. T. Leplawy, D. S. Jones, G. W. Kenner, and R. C. Sheppared, Tetrahedron, 1960, 11, 39.

27 T. Okazoe, K. Takai, and K. Utimoto, J. Am. Chem. Soc., 1987, 109, 951.

28 M. Schlosser, H. B. Tuong, and B. Schaub, Tetrahedron Lett., 1985, 26, 311 and references therein.
29 (a) M. Kobayashi, L. F. Valente, E. Negishi, W. Patterson, and A. Silveira, Jr., Synthesis, 1980, 1034; (b) A. Pfaltz and A. Mettenberger, Angew. Chem., Int. Ed. Engl., 1982, 21, 71.
30 (a) A. Alexakis, D. Jachiet, and J. F. Normant, Tetrahedron, 1986, 42, 5607; (b) Y. Yamamoto, Angew. Chem., Int. Ed. Engl., 1986, 25, 947; (c) M. J. Eis, J. E. Wrobel, and B. Ganem, J. Am. Chem. Soc., 1984, 106, 3693; (d) B. H. Lipshutz, D. A. Parker, J. A. Kozlowski, and S. L. Nguyen, Tetrahedron Lett., 1984, 25, 5959.
31 A. Ghribi, A. Alexakis, and J. F. Normant, Tetrahedron Lett., (a) 1984, 25, 3079; (b) 1984, 25, 3083; (c) 1984, 25, 3075.
32 (a) T. Takahashi, Y. Naito, and J. Tsuji, J. Am. Chem. Soc., 1981, 103, 5261; (b) E. J. Corey, and D. J. Beames, J. Am. Chem. Soc., 1972, 94, 7210; (c) C. C. Howard, R. F. Newton, D. P. Reynolds, A. H. Wadsworth, D. R. Kelly, and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1980, 852; (d) J. P. Marino and M. G. Kelly, J. Org. Chem., 1981, 46, 4389; (e) D. Culshaw, P. Grice, S. V. Ley, and G. A. Strange, Tetrahedron Lett., 1985, 26, 5837.
33 S. P. Findlay, J. Org. Chem., 1956, 21, 644.
34 E. J. Corey and G. Schmidt, Tetrahedron Lett., 1979, 399.
35 For the use of this reagent in rifamycin synthesis see: H. Iso, H. Nagaoka, and Y. Kishi, J. Am. Chem. Soc., 1980, 102, 7965.
36 T. Shioro, K. Nihomiya, S. Yamada, J. Am. Chem. Soc., 1972,94, 6203.
37 This reagent has been used in the syntheshis of N -methylmaysenine and maytansine: (a) E. J. Corey, L. O. Weizel, A. R. Chamberlin, and B. Lipshutz, J. Am. Chem. Soc., 1980, 102, 1439; (b) E. J. Corey, L. O. Weizel, A. R. Chamberlin, H. Cho, and D. H. Hua, J. Am. Chem. Soc., 1980, 102, 6613.
38 For preparation of amides using this reagent see: J. Diago-Meseguer, A. L. Palomo-Coll, and J. R. Fernandez-Lizarbe, Synthesis, 1980, 547. 39 Y. Kishi, J. Nat. Prod., 1979, 42, 549.
40 B. Loev and M. Kormendy, J. Org. Chem., 1963, 28, 3421.
41 See, for example: M. Shiraishi and S. Terao, J. Chem. Soc., Perkin Trans. 1, 1983, 1591.
42 K. Kloc, J. Mlochowski, and L. Syper, Chem. Lett., 1980, 725.
43 D.A. Evans, D. J. Mahre, and W. L. Scott, J. Org. Chem., 1985,50, 1830.
44 T. Inoue and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1980, 53, 174.
45 M. B. Gillespie, Biochem. Prep., 1973, 3, 79.
46 D. A. Evans, J. V. Nelson, E. Vogel, and T. R. Taber, J. Am. Chem. Soc., 1981, 103, 3099.

Received 20th April 1989; Paper 9/01672D

[^0]: * See footnote \ddagger on p .1

[^1]: * Quinones (63), (64), and (1a) are not very stable and they decompose to some extent during crystallization.

